Novel approaches to synthesize efficient inorganic electride [Ca24Al28O64]4+(e−)4 (thereafter, C12A7:e−) at ambient pressure under nitrogen atmosphere, are actively sought out to reduce the cost of massive formation of nanosized powder as well as compact large size target production. It led to a new era in low cost industrial applications of this abundant material as Transparent Conducting Oxides (TCOs) and as a catalyst. Therefore, the present study about C12A7:e− electride is directed towards challenges of cation doping in C12A7:e− to enhance the conductivity and form target to deposit thin film. Our investigation for cation doping on structural and electrical properties of Sn- and Si-doped C12A7:e− (Si-C12A7:e, and Sn-C12A7:e−) reduced graphene oxide (rGO) composite shows the maximum achieved conductivities of 5.79 S·cm−1 and 1.75 S·cm−1 respectively. On the other hand when both samples melted, then rGO free Sn-C12A7:e− and Si-C12A7:e− were obtained, with conductivities ~280 S.cm−1 and 300 S·cm−1, respectively. Iodometry based measured electron concentration of rGO free Sn-C12A7:e− and Si-C12A7:e−, 3 inch electride targets were ~2.22 × 1021 cm−3, with relative 97 ± 0.5% density, and ~2.23 × 1021 cm−3 with relative 99 ± 0.5% density, respectively. Theoretical conductivity was already reported excluding any associated experimental support. Hence the above results manifested feasibility of this sol-gel method for different elements doping to further boost up the electrical properties.

Single step synthesis of highly conductive room-temperature stable cation-substituted mayenite electride target and thin film

BIBBO' L;
2019-01-01

Abstract

Novel approaches to synthesize efficient inorganic electride [Ca24Al28O64]4+(e−)4 (thereafter, C12A7:e−) at ambient pressure under nitrogen atmosphere, are actively sought out to reduce the cost of massive formation of nanosized powder as well as compact large size target production. It led to a new era in low cost industrial applications of this abundant material as Transparent Conducting Oxides (TCOs) and as a catalyst. Therefore, the present study about C12A7:e− electride is directed towards challenges of cation doping in C12A7:e− to enhance the conductivity and form target to deposit thin film. Our investigation for cation doping on structural and electrical properties of Sn- and Si-doped C12A7:e− (Si-C12A7:e, and Sn-C12A7:e−) reduced graphene oxide (rGO) composite shows the maximum achieved conductivities of 5.79 S·cm−1 and 1.75 S·cm−1 respectively. On the other hand when both samples melted, then rGO free Sn-C12A7:e− and Si-C12A7:e− were obtained, with conductivities ~280 S.cm−1 and 300 S·cm−1, respectively. Iodometry based measured electron concentration of rGO free Sn-C12A7:e− and Si-C12A7:e−, 3 inch electride targets were ~2.22 × 1021 cm−3, with relative 97 ± 0.5% density, and ~2.23 × 1021 cm−3 with relative 99 ± 0.5% density, respectively. Theoretical conductivity was already reported excluding any associated experimental support. Hence the above results manifested feasibility of this sol-gel method for different elements doping to further boost up the electrical properties.
File in questo prodotto:
File Dimensione Formato  
Khan_2019_SciRep_Single_Editor.pdf

accesso aperto

Descrizione: Articolo Principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.69 MB
Formato Adobe PDF
2.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/46804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 50
social impact