Under some hypotheses on weighted functions, using the interior regularity results established in (Kovalevsky, A. and Nicolosi, F., 2005, Existence and regularity of solutions to a system of degenerate nonlinear fourth-order equations. Nonlinear Analysis, 61, 281–307) and estimating the oscillation of solutions near the boundary of Ω, we establish results on regularity up to the boundary of a solutions of the system (1.1).
Sotto alcune ipotesi sulle funzioni peso, facendo uso dei risultati di regolarità all'interno stabiliti in (Kovalevsky, A. and Nicolosi, F., 2005, Existence and regularity of solutions to a system of degenerate nonlinear fourth-order equations. Nonlinear Analysis, 61, 281–307) e mediante una stima dell'oscillazione delle soluzioni vicino alla frontiera di \Omega, si stabiliscono risultati di regolarità fino alla frontiera per le soluzioni del sistema (1.1).
On regularity up to the boundary of solutions to a system of degenerate nonlinear elliptic fourth-order equations / Bonafede, Salvatore; Nicolosi, F. - In: COMPLEX VARIABLES AND ELLIPTIC EQUATIONS. - ISSN 1747-6933. - 53:2(2008), pp. 101-116. [10.1080/17476930701466580]
On regularity up to the boundary of solutions to a system of degenerate nonlinear elliptic fourth-order equations
BONAFEDE, Salvatore;
2008-01-01
Abstract
Under some hypotheses on weighted functions, using the interior regularity results established in (Kovalevsky, A. and Nicolosi, F., 2005, Existence and regularity of solutions to a system of degenerate nonlinear fourth-order equations. Nonlinear Analysis, 61, 281–307) and estimating the oscillation of solutions near the boundary of Ω, we establish results on regularity up to the boundary of a solutions of the system (1.1).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.