In the framework of 2D circular membrane Micro-Electric-Mechanical-Systems (MEMS), anewnon-linearsecond-orderdifferentialmodelwithsingularityinthesteady-statecaseispresented in this paper. In particular, starting from the fact that the electric field magnitude is locally proportional to the curvature of the membrane, the problem is formalized in terms of the mean curvature. Then, a result of the existence of at least one solution is achieved. Finally, two different approaches prove that the uniqueness of the solutions is not ensured.

A 2D Non-Linear Second-Order Differential Model for Electrostatic Circular Membrane MEMS Devices: A Result of Existence and Uniqueness

Luisa Fattorusso;Mario Versaci
2019

Abstract

In the framework of 2D circular membrane Micro-Electric-Mechanical-Systems (MEMS), anewnon-linearsecond-orderdifferentialmodelwithsingularityinthesteady-statecaseispresented in this paper. In particular, starting from the fact that the electric field magnitude is locally proportional to the curvature of the membrane, the problem is formalized in terms of the mean curvature. Then, a result of the existence of at least one solution is achieved. Finally, two different approaches prove that the uniqueness of the solutions is not ensured.
circular membrane MEMS devices;
electrostatic actuator;
boundary non-linear second-order differential problems;
singularities;
mean curvature
File in questo prodotto:
File Dimensione Formato  
DiBarba_2019_Mathematics_Editorial.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 472 kB
Formato Adobe PDF
472 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12318/51471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact