Novel magnetite-supported palladium catalysts, in the form of nanofiber materials, were prepared by using the electrospinning process. Two different synthetic techniques were used to add palladium to the nanofibers: (i) the wet impregnation of palladium on the Fe3O4 electrospun support forming the Pd/Fe3O4[wnf] catalyst or (ii) the direct co-electrospinning of a solution containing both metal precursor specimens leading to a Pd/Fe3O4[cnf] sample. The obtained Pd-based Fe3O4 nanofibers were tested in the transfer hydrogenolysis of benzyl phenyl ether (BPE), one of the simplest lignin-derived aromatic ethers, by using 2-propanol as H-donor/solvent, and their performances were compared with the analogous impregnated Pd/Fe3O4 catalyst and a commercial Pd/C. A morphological and structural characterization of the investigated catalysts was performed by means of SEM-EDX, TGA-DSC, XRD, TEM, H2-TPR, and N2 isotherm at 77 K analysis. Pd/Fe3O4[wnf] was found to be the best catalytic system allowing a complete BPE conversion after 360 min at 240◦C and a good reusability in up to six consecutive recycling tests.

Pd/Fe3O4 Nanofibers for the Catalytic Conversion of Lignin-Derived Benzyl Phenyl Ether under Transfer Hydrogenolysis Conditions / Malara, Angela; Paone, Emilia; Bonaccorsi, Lucio; Mauriello, Francesco; Macario, Anastasia; Frontera, Patrizia. - In: CATALYSTS. - ISSN 2073-4344. - 10:1(2019), p. 20. [10.3390/catal10010020]

Pd/Fe3O4 Nanofibers for the Catalytic Conversion of Lignin-Derived Benzyl Phenyl Ether under Transfer Hydrogenolysis Conditions

Malara, Angela
;
Paone, Emilia;Bonaccorsi, Lucio;Mauriello, Francesco;Frontera, Patrizia
2019-01-01

Abstract

Novel magnetite-supported palladium catalysts, in the form of nanofiber materials, were prepared by using the electrospinning process. Two different synthetic techniques were used to add palladium to the nanofibers: (i) the wet impregnation of palladium on the Fe3O4 electrospun support forming the Pd/Fe3O4[wnf] catalyst or (ii) the direct co-electrospinning of a solution containing both metal precursor specimens leading to a Pd/Fe3O4[cnf] sample. The obtained Pd-based Fe3O4 nanofibers were tested in the transfer hydrogenolysis of benzyl phenyl ether (BPE), one of the simplest lignin-derived aromatic ethers, by using 2-propanol as H-donor/solvent, and their performances were compared with the analogous impregnated Pd/Fe3O4 catalyst and a commercial Pd/C. A morphological and structural characterization of the investigated catalysts was performed by means of SEM-EDX, TGA-DSC, XRD, TEM, H2-TPR, and N2 isotherm at 77 K analysis. Pd/Fe3O4[wnf] was found to be the best catalytic system allowing a complete BPE conversion after 360 min at 240◦C and a good reusability in up to six consecutive recycling tests.
File in questo prodotto:
File Dimensione Formato  
catalysts-10-00020.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.22 MB
Formato Adobe PDF
7.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/52923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact