Let N^d be the d-dimensional monoid of non-negative integers. A generalized numerical semigroup is a submonoid S ⊆ N^d such that H(S) = N^d S is a finite set. We introduce irreducible generalized numerical semigroups and characterize them in terms of the cardinality of a special subset of H(S). In particular, we describe relaxed monomial orders on N^d , define the Frobenius element of S with respect to a given relaxed monomial order, and show that the Frobenius element of S is independent of the order if the generalized numerical semigroup is irreducible.
Irreducible generalized numerical semigroups and uniqueness of the Frobenius element / Cisto, Carmelo; Failla, Gioia; Peterson, Chris; Utano, Rosanna. - In: SEMIGROUP FORUM. - ISSN 0037-1912. - 99:2(2019), pp. 481-495. [10.1007/s00233-019-10040-1]
Irreducible generalized numerical semigroups and uniqueness of the Frobenius element
Failla, Gioia;
2019-01-01
Abstract
Let N^d be the d-dimensional monoid of non-negative integers. A generalized numerical semigroup is a submonoid S ⊆ N^d such that H(S) = N^d S is a finite set. We introduce irreducible generalized numerical semigroups and characterize them in terms of the cardinality of a special subset of H(S). In particular, we describe relaxed monomial orders on N^d , define the Frobenius element of S with respect to a given relaxed monomial order, and show that the Frobenius element of S is independent of the order if the generalized numerical semigroup is irreducible.File | Dimensione | Formato | |
---|---|---|---|
Cisto_2019_Sem.Forum_Irreducible_editor.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
319.39 kB
Formato
Adobe PDF
|
319.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.