The existence of innitely many constant-sign solutions for a nonlinear pa- rameter depending Neumann boundary value problem involving a discrete p-Laplacian operator is investigated. Our approach is fully based on the critical point theory for func- tionals dened on a nite dimensional Banach space.
Titolo: | Infinitely many constant-sign solutions for a discrete parameter-depending Neumann problem |
Autori: | CANDITO, Pasquale (Corresponding) |
Data di pubblicazione: | 2015 |
Rivista: | |
Abstract: | The existence of innitely many constant-sign solutions for a nonlinear pa- rameter depending Neumann boundary value problem involving a discrete p-Laplacian operator is investigated. Our approach is fully based on the critical point theory for func- tionals dened on a nite dimensional Banach space. |
Handle: | http://hdl.handle.net/20.500.12318/566 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.