Abstract Let Ω be a bounded convex open set of n , n ≥ 2, ∂Ω of class C^ 2. We consider the following Cauchy–Dirichlet problem where f  L 2,λ(0, T; L 2(Ω,  N )), 0 < λ < 1. F satisfies Campanato's Condition A x and is measurable on Ω × [0, T ]. We show that there exists ϵ that depends on the constants appearing in Condition A x such that for any μ  (0, λ] with μ < ϵ, Moreover, if F is continuous on (x, t) then

Time regularity for solutions of fully nonlinear Parabolic Systems / Fattorusso, Luisa Angela Maria; A., Tarsia. - In: COMPLEX VARIABLES AND ELLIPTIC EQUATIONS. - ISSN 1747-6933. - 56:12 (special issue)(2011), pp. 1155-1168. [10.1080/17476933.2011.559545]

Time regularity for solutions of fully nonlinear Parabolic Systems

FATTORUSSO, Luisa Angela Maria;
2011-01-01

Abstract

Abstract Let Ω be a bounded convex open set of n , n ≥ 2, ∂Ω of class C^ 2. We consider the following Cauchy–Dirichlet problem where f  L 2,λ(0, T; L 2(Ω,  N )), 0 < λ < 1. F satisfies Campanato's Condition A x and is measurable on Ω × [0, T ]. We show that there exists ϵ that depends on the constants appearing in Condition A x such that for any μ  (0, λ] with μ < ϵ, Moreover, if F is continuous on (x, t) then
2011
fully nonlinear parabolic systems; regularity Morrey-Campanato spaces
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/5700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact