The paper is concerned with radial solutions to the elastic-plastic torsion problem, assuming the free term to belong to L^p(Ω). In particular, we obtain a necessary and sufficient condition in order that the plastic region exists and we characterize the free boundary. Moreover, we find the explicit radial solution u ∈ W^{2,p}(Ω) and the Lagrange multiplier μ ∈ L^p(Ω).
Radial solutions and free boundary of the elastic-plastic torsion problem / Giuffre', Sofia; Pratelli, A; Puglisi, D. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 25:2(2018), pp. 529-543.
Radial solutions and free boundary of the elastic-plastic torsion problem
GIUFFRE', Sofia;
2018-01-01
Abstract
The paper is concerned with radial solutions to the elastic-plastic torsion problem, assuming the free term to belong to L^p(Ω). In particular, we obtain a necessary and sufficient condition in order that the plastic region exists and we characterize the free boundary. Moreover, we find the explicit radial solution u ∈ W^{2,p}(Ω) and the Lagrange multiplier μ ∈ L^p(Ω).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Giuffre_2018_JConvexAnalysis_radial_editor.pdf
non disponibili
Descrizione: versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
196.21 kB
Formato
Adobe PDF
|
196.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.