The paper is concerned with radial solutions to the elastic-plastic torsion problem, assuming the free term to belong to L^p(Ω). In particular, we obtain a necessary and sufficient condition in order that the plastic region exists and we characterize the free boundary. Moreover, we find the explicit radial solution u ∈ W^{2,p}(Ω) and the Lagrange multiplier μ ∈ L^p(Ω).

Radial solutions and free boundary of the elastic-plastic torsion problem / Giuffre', Sofia; Pratelli, A; Puglisi, D. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 25:2(2018), pp. 529-543.

Radial solutions and free boundary of the elastic-plastic torsion problem

GIUFFRE', Sofia;
2018-01-01

Abstract

The paper is concerned with radial solutions to the elastic-plastic torsion problem, assuming the free term to belong to L^p(Ω). In particular, we obtain a necessary and sufficient condition in order that the plastic region exists and we characterize the free boundary. Moreover, we find the explicit radial solution u ∈ W^{2,p}(Ω) and the Lagrange multiplier μ ∈ L^p(Ω).
2018
elastic-plastic torsion ; radial solutions; Lagrange multipliers
File in questo prodotto:
File Dimensione Formato  
Giuffre_2018_JConvexAnalysis_radial_editor.pdf

non disponibili

Descrizione: versione editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 196.21 kB
Formato Adobe PDF
196.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/5831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact