The design and testing phase of photovoltaic (PV) power systems requires timeconsuming and expensive field-testing activities for the proper operational evaluation of maximum power point trackers (MPPT), battery chargers, DC/AC inverters. Instead, the use of a PV source emulator that accurately reproduces the electrical characteristic of a PV panel or array is highly desirable for in-lab testing and rapid prototyping. In this paper, we present the development of a low-cost microcontroller-based PV source emulator, which allows testing the static and dynamic performance of PV systems considering different PV module types and variable operating and environmental conditions. The novelty of the simple design adopted resides in using a low-cost current generator and a single MOSFET converter to reproduce, from a fixed current source, the exact amount of current predicted by the PV model for the actual load conditions. The I-V characteristic is calculated in real-time using a single diode exponential model under variable and user-selectable operating conditions. The proposed method has the advantage of reducing noise from high-frequency switching, reducing or eliminating ripple and the demand for output filters, and it does not require expensive DC Power source, providing high accuracy results. The fast response of the system allows the testing of very fast MPPTs algorithms, thus overcoming the main limitations of state-of-art PV source emulators that are unable to respond to the quick variation of the load. Experimental results carried on a hardware prototype of the proposed PV source emulator are reported to validate the concept. As a whole result, an average error of ± 1% in the reproduction of PV module I-V characteristics have been obtained and reported. ©2019 by the authors. Licensee MDPI, Basel, Switzerland.

Simple and low-cost photovoltaic module emulator

Merenda M.
;
Iero D.;Carotenuto R.;Della Corte F. G.
2019-01-01

Abstract

The design and testing phase of photovoltaic (PV) power systems requires timeconsuming and expensive field-testing activities for the proper operational evaluation of maximum power point trackers (MPPT), battery chargers, DC/AC inverters. Instead, the use of a PV source emulator that accurately reproduces the electrical characteristic of a PV panel or array is highly desirable for in-lab testing and rapid prototyping. In this paper, we present the development of a low-cost microcontroller-based PV source emulator, which allows testing the static and dynamic performance of PV systems considering different PV module types and variable operating and environmental conditions. The novelty of the simple design adopted resides in using a low-cost current generator and a single MOSFET converter to reproduce, from a fixed current source, the exact amount of current predicted by the PV model for the actual load conditions. The I-V characteristic is calculated in real-time using a single diode exponential model under variable and user-selectable operating conditions. The proposed method has the advantage of reducing noise from high-frequency switching, reducing or eliminating ripple and the demand for output filters, and it does not require expensive DC Power source, providing high accuracy results. The fast response of the system allows the testing of very fast MPPTs algorithms, thus overcoming the main limitations of state-of-art PV source emulators that are unable to respond to the quick variation of the load. Experimental results carried on a hardware prototype of the proposed PV source emulator are reported to validate the concept. As a whole result, an average error of ± 1% in the reproduction of PV module I-V characteristics have been obtained and reported. ©2019 by the authors. Licensee MDPI, Basel, Switzerland.
2019
MPPT, Photovoltaic emulator, Photovoltaic panel, Single diode model
File in questo prodotto:
File Dimensione Formato  
Merenda_2019_ELECTRONICS_Simple_editor.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/58348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 17
social impact