We consider the Dirichlet problem for a class of quasilinear elliptic systems in domain with irregular boundary. The principal part satisfies componentwise coercivity condition and the nonlinear terms are Carathéodory maps having Morrey regularity in x and verifying controlled growth conditions with respect to the other variables. We have obtained boundedness of the weak solution to the problem that permits to apply an iteration procedure in order to find optimal Morrey regularity of its gradient.

Consideriamo il problema di Cauchy-Dirichlet per una classe di sistemi quasilineari elliuttici in dominii con frontiera irregolare.La parte principale soddisfa la condizione di corcitività componrnte per componente

Precise Morrey regularity of the weak solutions to a kind of quasilinear systems with discontinuous data / Fattorusso, Luisa Angela Maria; Softova, Lubomirag.. - In: ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS. - ISSN 1417-3875. - 36:(2020), pp. 1-13. [10.14232/ejqtde.2020.1.36]

Precise Morrey regularity of the weak solutions to a kind of quasilinear systems with discontinuous data

Fattorusso Luisa Angela Maria;
2020-01-01

Abstract

We consider the Dirichlet problem for a class of quasilinear elliptic systems in domain with irregular boundary. The principal part satisfies componentwise coercivity condition and the nonlinear terms are Carathéodory maps having Morrey regularity in x and verifying controlled growth conditions with respect to the other variables. We have obtained boundedness of the weak solution to the problem that permits to apply an iteration procedure in order to find optimal Morrey regularity of its gradient.
2020
Consideriamo il problema di Cauchy-Dirichlet per una classe di sistemi quasilineari elliuttici in dominii con frontiera irregolare.La parte principale soddisfa la condizione di corcitività componrnte per componente
Quasilinear elliptic systems, controlled growth conditions, componentwise coercivity, Reifenberg-flat domain, Morrey spaces.
File in questo prodotto:
File Dimensione Formato  
Fattorusso_2020_ejqtde_Precise_editor.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 440.96 kB
Formato Adobe PDF
440.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/59306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact