We consider the Dirichlet problem for a class of quasilinear elliptic systems in domain with irregular boundary. The principal part satisfies componentwise coercivity condition and the nonlinear terms are Carathéodory maps having Morrey regularity in x and verifying controlled growth conditions with respect to the other variables. We have obtained boundedness of the weak solution to the problem that permits to apply an iteration procedure in order to find optimal Morrey regularity of its gradient.
Consideriamo il problema di Cauchy-Dirichlet per una classe di sistemi quasilineari elliuttici in dominii con frontiera irregolare.La parte principale soddisfa la condizione di corcitività componrnte per componente
Precise Morrey regularity of the weak solutions to a kind of quasilinear systems with discontinuous data / Fattorusso, Luisa Angela Maria; Softova, Lubomirag.. - In: ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS. - ISSN 1417-3875. - 36:(2020), pp. 1-13. [10.14232/ejqtde.2020.1.36]
Precise Morrey regularity of the weak solutions to a kind of quasilinear systems with discontinuous data
Fattorusso Luisa Angela Maria;
2020-01-01
Abstract
We consider the Dirichlet problem for a class of quasilinear elliptic systems in domain with irregular boundary. The principal part satisfies componentwise coercivity condition and the nonlinear terms are Carathéodory maps having Morrey regularity in x and verifying controlled growth conditions with respect to the other variables. We have obtained boundedness of the weak solution to the problem that permits to apply an iteration procedure in order to find optimal Morrey regularity of its gradient.File | Dimensione | Formato | |
---|---|---|---|
Fattorusso_2020_ejqtde_Precise_editor.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
440.96 kB
Formato
Adobe PDF
|
440.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.