In this paper, a computational intelligence method to model lossy substrate integrated waveguide (SIW) cavity resonators, the Neural Network Residual Kriging (NNRK) approach, is presented. Numerical results for the fundamental resonant frequency fr and related quality factor Qr computed for the case of lossy hexagonal SIW resonators demonstrate the NNRK superior estimation accuracy compared to that provided by the conventional Artificial Neural Networks (ANNs) models for these devices.
Accurate modelling of lossy SIW resonators using a neural network residual kriging approach / Angiulli, G; De Carlo, D; Sgrò, A; Versaci, M; Morabito, Francesco Carlo. - In: IEICE ELECTRONICS EXPRESS. - ISSN 1349-2543. - 14:6(2017), pp. 1-6. [10.1587/elex.14.20170073]
Accurate modelling of lossy SIW resonators using a neural network residual kriging approach
Angiulli G
;VERSACI M;Morabito Francesco Carlo
2017-01-01
Abstract
In this paper, a computational intelligence method to model lossy substrate integrated waveguide (SIW) cavity resonators, the Neural Network Residual Kriging (NNRK) approach, is presented. Numerical results for the fundamental resonant frequency fr and related quality factor Qr computed for the case of lossy hexagonal SIW resonators demonstrate the NNRK superior estimation accuracy compared to that provided by the conventional Artificial Neural Networks (ANNs) models for these devices.File | Dimensione | Formato | |
---|---|---|---|
Angiulli_2017_IEICE ELEX_Accurate_Editorial.pdf
accesso aperto
Descrizione: Versione Editoriale - Open Access
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.