The aim of the paper is to present Hermite-type multiwavelets, i.e. wavelets acting on vector data representing function values and consecutive derivatives, which satisfy the vanishing moment property with respect to elements in the space spanned by exponentials and polynomials. Such functions satisfy a two-scale relation which is level-dependent as well as the corresponding multiresolution analysis. An important feature of the associated filters is the possibility of factorizing their symbols in terms of the so-called cancellation operator. This is shown, in particular, in the situation where Hermite multiwavelets are obtained by completing interpolatory level-dependent Hermite subdivision operators, reproducing polynomial and exponential data, to biorthogonal systems. A few constructions of families of multiwavelet filters of this kind are proposed.
A note on Hermite multiwavelets with polynomial and exponential vanishing moments / Cotronei, Mariantonia; Sissouno, N.. - In: APPLIED NUMERICAL MATHEMATICS. - ISSN 0168-9274. - 120:(2017), pp. 21-34. [10.1016/j.apnum.2017.04.009]
A note on Hermite multiwavelets with polynomial and exponential vanishing moments
COTRONEI, Mariantonia
;
2017-01-01
Abstract
The aim of the paper is to present Hermite-type multiwavelets, i.e. wavelets acting on vector data representing function values and consecutive derivatives, which satisfy the vanishing moment property with respect to elements in the space spanned by exponentials and polynomials. Such functions satisfy a two-scale relation which is level-dependent as well as the corresponding multiresolution analysis. An important feature of the associated filters is the possibility of factorizing their symbols in terms of the so-called cancellation operator. This is shown, in particular, in the situation where Hermite multiwavelets are obtained by completing interpolatory level-dependent Hermite subdivision operators, reproducing polynomial and exponential data, to biorthogonal systems. A few constructions of families of multiwavelet filters of this kind are proposed.File | Dimensione | Formato | |
---|---|---|---|
Cotronei_2017_APNUM_Note_Editor.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
720.02 kB
Formato
Adobe PDF
|
720.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.