We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator (special case is the p-Laplacian) with a (p-1)-superlinear Carathéodory reaction term, which need not satisfy the usual in such cases Ambrosetti-Rabinowitz condition. Using variational methods based on the critical point theory coupled with suitable truncation techniques, we show that the problem has at least five nontrivial smooth solutions.
Titolo: | A multiplicity theorem for p-superlinear Neumann problems with a nonhomogeneous differential operator |
Autori: | |
Data di pubblicazione: | 2014 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.12318/6091 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.