Coumarin is one of the simplest plant secondary metabolites, widely distributed in the plant kingdom, affecting root form and function, including anatomy, morphology and nutrient uptake. Although, some plant responses to coumarin have been described, comprehensive knowledge of the physiological and molecular mechanisms is lacking. Maize seedlings exposed to different coumarin concentrations, alone or in combination with 200 μm nitrate (NO3- ), were analysed, through a physiological and molecular approach, to elucidate action of coumarin on net NO3- uptake rate (NNUR). In detail, the time course of NNUR, plasma membrane (PM) H+ -ATPase activity, proton pumping and related gene expression (ZmNPF6.3, ZmNRT2.1, ZmNAR2.1, ZmHA3 and ZmHA4) were evaluated. Coumarin alone did not affect nitrate uptake, PM H+ -ATPase activity or transcript levels of ZmNRT2.1 and ZmHA3. In contrast, coumarin alone increased ZmNPF6.3, ZmNAR2.1 and ZmHA4 expression in response to abiotic stress. When coumarin and NO3- were concurrently added to the nutrient solution, a significant increase in the NNUR, PM H+ -ATPase activity, together with ZmNAR2.1:ZmNRT2.1 and ZmHA4 expression was observed, suggesting that coumarin affected the inducible component of the high affinity transport system (iHATS), and this effect appeared to be mediated by nitrate. Moreover, results with vanadate, an inhibitor of the PM H+ -ATPase, suggested that this enzyme could be the main target of coumarin. Surprisingly, coumarin did not affect PM H+ -ATPase activity by direct contact with plasma membrane vesicles isolated from maize roots, indicating its possible elicitor role in gene transcription.
Coumarin enhances nitrate uptake in maize roots through modulation of plasma membrane H+-ATPase activity / Lupini, A; Araniti, F; Mauceri, A; Princi, Mp; Sorgona', A; Sunseri, F; Varanini, Z; Abenavoli, Mr. - In: PLANT BIOLOGY. - ISSN 1435-8603. - 20:2(2018), pp. 390-398. [10.1111/plb.12674]
Coumarin enhances nitrate uptake in maize roots through modulation of plasma membrane H+-ATPase activity
Lupini A
;Araniti F;SORGONA' A;Sunseri F
;Abenavoli MR
2018-01-01
Abstract
Coumarin is one of the simplest plant secondary metabolites, widely distributed in the plant kingdom, affecting root form and function, including anatomy, morphology and nutrient uptake. Although, some plant responses to coumarin have been described, comprehensive knowledge of the physiological and molecular mechanisms is lacking. Maize seedlings exposed to different coumarin concentrations, alone or in combination with 200 μm nitrate (NO3- ), were analysed, through a physiological and molecular approach, to elucidate action of coumarin on net NO3- uptake rate (NNUR). In detail, the time course of NNUR, plasma membrane (PM) H+ -ATPase activity, proton pumping and related gene expression (ZmNPF6.3, ZmNRT2.1, ZmNAR2.1, ZmHA3 and ZmHA4) were evaluated. Coumarin alone did not affect nitrate uptake, PM H+ -ATPase activity or transcript levels of ZmNRT2.1 and ZmHA3. In contrast, coumarin alone increased ZmNPF6.3, ZmNAR2.1 and ZmHA4 expression in response to abiotic stress. When coumarin and NO3- were concurrently added to the nutrient solution, a significant increase in the NNUR, PM H+ -ATPase activity, together with ZmNAR2.1:ZmNRT2.1 and ZmHA4 expression was observed, suggesting that coumarin affected the inducible component of the high affinity transport system (iHATS), and this effect appeared to be mediated by nitrate. Moreover, results with vanadate, an inhibitor of the PM H+ -ATPase, suggested that this enzyme could be the main target of coumarin. Surprisingly, coumarin did not affect PM H+ -ATPase activity by direct contact with plasma membrane vesicles isolated from maize roots, indicating its possible elicitor role in gene transcription.File | Dimensione | Formato | |
---|---|---|---|
Lupini_2018_PBJ_Coumarin_editor.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
444.41 kB
Formato
Adobe PDF
|
444.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Lupini_2018 PB_Coumarin _postprint.pdf
Open Access dal 28/11/2018
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
392.91 kB
Formato
Adobe PDF
|
392.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.