This article concerns a class of elliptic equations on Carnot groups depending on one real parameter. Our approach is based on variational methods. More precisely, we establish the existence of at least two weak solutions for the treated problem by using a direct consequence of the celebrated Pucci-Serrin theorem and of a local minimum result for differentiable functionals due to Ricceri.

Subelliptic and parametric equations on Carnot groups / Ferrara, Massimiliano; Molica Bisci, G. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6826. - 144:7(2016), pp. 3035-3045. [10.1090/proc/12948]

Subelliptic and parametric equations on Carnot groups

FERRARA, Massimiliano
Supervision
;
2016-01-01

Abstract

This article concerns a class of elliptic equations on Carnot groups depending on one real parameter. Our approach is based on variational methods. More precisely, we establish the existence of at least two weak solutions for the treated problem by using a direct consequence of the celebrated Pucci-Serrin theorem and of a local minimum result for differentiable functionals due to Ricceri.
2016
Subelliptic equations, Carnot groups, multiple solutions, critical point results
File in questo prodotto:
File Dimensione Formato  
Ferrara-Molica Bisci PAMS 2016.pdf

non disponibili

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 208.18 kB
Formato Adobe PDF
208.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/6326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact