The paper proposes a fractional calculus approach to continuous wavelet analysis. Upon introducing a Mellin transform expression of the mother wavelet, it is shown that the wavelet transform of an arbitrary function f(t) can be given a fractional representation involving a suitable number of Riesz integrals of f(t), and corresponding fractional moments of the mother wavelet. This result serves as a basis for an original approach to wavelet analysis of linear systems under arbitrary excitations. In particular, using the proposed fractional representation for the wavelet transform of the excitation, it is found that the wavelet transform of the response can readily be computed by a Mellin transform expression, with fractional moments obtained from a set of algebraic equations whose coefficient matrix applies for any scale a of the wavelet transform. Robustness and computationally efficiency of the proposed approach are shown in the paper.

A Mellin transform approach to wavelet analysis / Alotta, G; DI PAOLA, M; Failla, Giuseppe. - In: COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION. - ISSN 1007-5704. - 28:(1-3)(2015), pp. 175-193. [10.1016/j.cnsns.2015.04.001]

A Mellin transform approach to wavelet analysis

ALOTTA G
;
FAILLA, Giuseppe
2015-01-01

Abstract

The paper proposes a fractional calculus approach to continuous wavelet analysis. Upon introducing a Mellin transform expression of the mother wavelet, it is shown that the wavelet transform of an arbitrary function f(t) can be given a fractional representation involving a suitable number of Riesz integrals of f(t), and corresponding fractional moments of the mother wavelet. This result serves as a basis for an original approach to wavelet analysis of linear systems under arbitrary excitations. In particular, using the proposed fractional representation for the wavelet transform of the excitation, it is found that the wavelet transform of the response can readily be computed by a Mellin transform expression, with fractional moments obtained from a set of algebraic equations whose coefficient matrix applies for any scale a of the wavelet transform. Robustness and computationally efficiency of the proposed approach are shown in the paper.
2015
Mellin transform; Fractional calculus; Wavelet analysis
File in questo prodotto:
File Dimensione Formato  
Alotta Di Paola Failla 2015_postprint.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 8.09 MB
Formato Adobe PDF
8.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/6387
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact