We consider a homogeneous graded algebra on a field $K$, which is the Segre product of a $K-$polynomial ring in $m$ variables and the second squarefree Veronese subalgebra of a $K-$polynomial ring in $n$ variables, generated over $K$ by elements of degree $1$. We describe a class of graded ideals of the Segre product with a linear resolution, provided that the minimal system of generators satisfies a suitable condition of combinatorial kind.
Ideals with linear resolution in Segre products / Failla, Gioia. - In: ANALELE UNIVERSITATII DIN CRAIOVA. SERIA MATEMATICA, INFORMATICA. - ISSN 1223-6934. - 44:1(2017), pp. 149-155.
Ideals with linear resolution in Segre products
FAILLA, Gioia
2017-01-01
Abstract
We consider a homogeneous graded algebra on a field $K$, which is the Segre product of a $K-$polynomial ring in $m$ variables and the second squarefree Veronese subalgebra of a $K-$polynomial ring in $n$ variables, generated over $K$ by elements of degree $1$. We describe a class of graded ideals of the Segre product with a linear resolution, provided that the minimal system of generators satisfies a suitable condition of combinatorial kind.File | Dimensione | Formato | |
---|---|---|---|
Failla_2017_Annals_Ideals_Editor.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
304.51 kB
Formato
Adobe PDF
|
304.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.