We consider a homogeneous graded algebra on a field $K$, which is the Segre product of a $K-$polynomial ring in $m$ variables and the second squarefree Veronese subalgebra of a $K-$polynomial ring in $n$ variables, generated over $K$ by elements of degree $1$. We describe a class of graded ideals of the Segre product with a linear resolution, provided that the minimal system of generators satisfies a suitable condition of combinatorial kind.

Ideals with linear resolution in Segre products

FAILLA, Gioia
2017

Abstract

We consider a homogeneous graded algebra on a field $K$, which is the Segre product of a $K-$polynomial ring in $m$ variables and the second squarefree Veronese subalgebra of a $K-$polynomial ring in $n$ variables, generated over $K$ by elements of degree $1$. We describe a class of graded ideals of the Segre product with a linear resolution, provided that the minimal system of generators satisfies a suitable condition of combinatorial kind.
Monomial algebras, graded ideals, linear resolutions
File in questo prodotto:
File Dimensione Formato  
Failla_2017_Annals_Ideals_Editor.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 304.51 kB
Formato Adobe PDF
304.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/6746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact