In recent years, wave energy harvesting systems have received considerable attention as an alternative energy source. Within this class of systems, single-point harvesters are popular at least for preliminary studies and proof-of-concept analyses in particular locations. Unfortunately, the large displacements of a single-point wave energy harvester are described by a set of nonlinear equations. Further, the excitation is often characterized statistically and in terms of a relevant power spectral density (PSD) function. In the context of this complex problem, the development of efficient techniques for the calculation of reliable harvester response statistics is quite desirable, since traditional Monte Carlo techniques involve nontrivial computational cost. The paper proposes a statistical linearization technique for conducting expeditiously random vibration analyses of single-point harvesters. The technique is developed by relying on the determination of a surrogate linear system identified by minimizing the mean square error between the linear system and the nonlinear one. It is shown that the technique can be implemented via an iterative procedure, which allows calculating statistics, PSDs, and probability density functions (PDFs) of the response components. The reliability of the statistical linearization solution is assessed vis-à-vis data from relevant Monte Carlo simulations. This novel approach can be a basis for constructing computationally expeditious assessments of various design alternatives.

Efficient dynamic analysis of a nonlinear wave energy harvester model / Spanos, P. D.; Arena, Felice; Richichi, A.; Malara, G.. - In: JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME. - ISSN 0892-7219. - 138:4(2016), p. 41901.041901. [10.1115/1.4032898]

Efficient dynamic analysis of a nonlinear wave energy harvester model

Arena Felice;Malara G.
2016-01-01

Abstract

In recent years, wave energy harvesting systems have received considerable attention as an alternative energy source. Within this class of systems, single-point harvesters are popular at least for preliminary studies and proof-of-concept analyses in particular locations. Unfortunately, the large displacements of a single-point wave energy harvester are described by a set of nonlinear equations. Further, the excitation is often characterized statistically and in terms of a relevant power spectral density (PSD) function. In the context of this complex problem, the development of efficient techniques for the calculation of reliable harvester response statistics is quite desirable, since traditional Monte Carlo techniques involve nontrivial computational cost. The paper proposes a statistical linearization technique for conducting expeditiously random vibration analyses of single-point harvesters. The technique is developed by relying on the determination of a surrogate linear system identified by minimizing the mean square error between the linear system and the nonlinear one. It is shown that the technique can be implemented via an iterative procedure, which allows calculating statistics, PSDs, and probability density functions (PDFs) of the response components. The reliability of the statistical linearization solution is assessed vis-à-vis data from relevant Monte Carlo simulations. This novel approach can be a basis for constructing computationally expeditious assessments of various design alternatives.
2016
Single-point absorber
Random vibration
Statistical linearization
Monte Carlo simulation
Equivalent linearization
Efficient assessment of design alternatives
File in questo prodotto:
File Dimensione Formato  
Spanos_2016_jomae_efficient.pdf

non disponibili

Descrizione: Versione Editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 366.86 kB
Formato Adobe PDF
366.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/7027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 24
social impact