Sex chromosomes evolved from autosomes many times across the eukaryote phylogeny. Several models have been proposed to explain this transition, some involving male and female sterility mutations linked in a region of suppressed recombination between X and Y (or Z/W, U/V) chromosomes. Comparative and experimental analysis of a reference genome assembly for a double haploid YY male garden asparagus (Asparagus officinalis L.) individual implicates separate but linked genes as responsible for sex determination. Dioecy has evolved recently within Asparagus and sex chromosomes are cytogenetically identical with the Y, harboring a megabase segment that is missing from the X. We show that deletion of this entire region results in a male-to-female conversion, whereas loss of a single suppressor of female development drives male-to-hermaphrodite conversion. A single copy anther-specific gene with a male sterile Arabidopsis knockout phenotype is also in the Y-specific region, supporting a two-gene model for sex chromosome evolution.

The asparagus genome sheds light on the origin and evolution of a young Y chromosome / Harkess, Alex; Zhou, Jinsong; Xu, Chunyan; Bowers, John E.; Van der Hulst, Ron; Ayyampalayam, Saravanaraj; Mercati, Francesco; Riccardi, Paolo; Mckain, Michael R.; Kakrana, Atul; Tang, Haibao; Ray, Jeremy; Groenendijk, John; Arikit, Siwaret; Mathioni, Sandra M.; Nakano, Mayumi; Shan, Hongyan; Telgmann-Rauber, Alexa; Kanno, Akira; Yue, Zhen; Chen, Haixin; Li, Wenqi; Chen, Yanling; Xu, Xiangyang; Zhang, Yueping; Luo, Shaochun; Chen, Helong; Gao, Jianming; Mao, Zichao; Chris Pires, J.; Luo, Meizhong; Kudrna, Dave; Wing, Rod A.; Meyers, Blake C.; Yi, Kexian; Kong, Hongzhi; Lavrijsen, Pierre; Sunseri, Francesco; Falavigna, Agostino; Ye, Yin; Leebens-Mack, James H.; Chen, Guangyu. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 8:(2017), pp. 1279.1-1279.10. [10.1038/s41467-017-01064-8]

The asparagus genome sheds light on the origin and evolution of a young Y chromosome

Francesco Sunseri;
2017-01-01

Abstract

Sex chromosomes evolved from autosomes many times across the eukaryote phylogeny. Several models have been proposed to explain this transition, some involving male and female sterility mutations linked in a region of suppressed recombination between X and Y (or Z/W, U/V) chromosomes. Comparative and experimental analysis of a reference genome assembly for a double haploid YY male garden asparagus (Asparagus officinalis L.) individual implicates separate but linked genes as responsible for sex determination. Dioecy has evolved recently within Asparagus and sex chromosomes are cytogenetically identical with the Y, harboring a megabase segment that is missing from the X. We show that deletion of this entire region results in a male-to-female conversion, whereas loss of a single suppressor of female development drives male-to-hermaphrodite conversion. A single copy anther-specific gene with a male sterile Arabidopsis knockout phenotype is also in the Y-specific region, supporting a two-gene model for sex chromosome evolution.
2017
SEQUENCE PROVIDES INSIGHTS; SEX DETERMINATION; PHYLOGENETIC ANALYSIS; UNISEXUAL FLOWERS; OFFICINALIS; PLANTS; DIOECY; REVEALS; GENES; POLYPLOIDY
File in questo prodotto:
File Dimensione Formato  
Harkess_2017_NC_The_editor.pdf

accesso aperto

Descrizione: Versione dell'Editore
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/7071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 207
  • ???jsp.display-item.citation.isi??? 196
social impact