Alternaria brown spot is one of the most important diseases of tangerines and their hybrids worldwide. Recently, outbreaks in Mediterranean areas related to susceptible cultivars, refocused attention on the disease. Twenty representatives were selected from a collection of 180 isolates of Alternaria spp. from citrus leaves and fruit. They were characterized along with reference strains of Alternaria spp. Micro- and macroscopic characteristics separated most Alternaria isolates into six morphotypes referable to A. alternata (5) and A. arborescens (1). Phylogenetic analyses, based on endopolygalacturonase (endopg) and internal transcribed spacer (ITS), confirmedthis finding. Moreover, a five-gene phylogeny including two anonymous genomics regions (OPA 1-3 and OPA 2-1), and the beta-tubulin gene (btub), produced a further clustering of A. alternata into three clades. This analysis suggested the existence of intra-species molecular variability. Investigated isolates showed different levels of virulence on leaves and fruit. In particular, the pathogenicity on fruit seemed to be correlated with the tissue of isolation and the clade. The toxigenic behavior of Alternaria isolates was also investigated, with tenuazonic acid (TeA) being the most abundant mycotoxin (0.2-20 mg/L). Isolates also synthesized the mycotoxins alternariol(AOH), its derivate alternariol monomethyl ether (AME), and altenuene (ALT), although to a lesser extent. AME production significantly varied among the six morphotypes. The expression of pksJ/pksH, biosynthetic genes of AOH/AME, was not correlated with actual toxin production, but it was significantly different between the two genotypes and among the four clades. Finally, ten isolates proved to express the biosynthetic genes of ACTT1 phytotoxin, and thus to be included in the Alternaria pathotype tangerine. A significant correlation between pathogenicity on leaves and ACTT1 gene expression was recorded. The latter was significantly dependent on geographical origin. The widespread occurrence of Alternaria spp. on citrus fruit and their ability to producemycotoxins might represent a serious concern for producers and consumers.

Characterization of citrus-associated Alternaria species in Mediterranean areas / Garganese, F; Schena, L; Siciliano, I; Prigigallo, Mi; Spadaro, D; De Grassi, A; Ippolito, A; Sanzani, Sm. - In: PLOS ONE. - ISSN 1932-6203. - 11:9(2016), pp. e0163255.1-e0163255.18. [10.1371/journal.pone.0163255]

Characterization of citrus-associated Alternaria species in Mediterranean areas

Schena L;
2016-01-01

Abstract

Alternaria brown spot is one of the most important diseases of tangerines and their hybrids worldwide. Recently, outbreaks in Mediterranean areas related to susceptible cultivars, refocused attention on the disease. Twenty representatives were selected from a collection of 180 isolates of Alternaria spp. from citrus leaves and fruit. They were characterized along with reference strains of Alternaria spp. Micro- and macroscopic characteristics separated most Alternaria isolates into six morphotypes referable to A. alternata (5) and A. arborescens (1). Phylogenetic analyses, based on endopolygalacturonase (endopg) and internal transcribed spacer (ITS), confirmedthis finding. Moreover, a five-gene phylogeny including two anonymous genomics regions (OPA 1-3 and OPA 2-1), and the beta-tubulin gene (btub), produced a further clustering of A. alternata into three clades. This analysis suggested the existence of intra-species molecular variability. Investigated isolates showed different levels of virulence on leaves and fruit. In particular, the pathogenicity on fruit seemed to be correlated with the tissue of isolation and the clade. The toxigenic behavior of Alternaria isolates was also investigated, with tenuazonic acid (TeA) being the most abundant mycotoxin (0.2-20 mg/L). Isolates also synthesized the mycotoxins alternariol(AOH), its derivate alternariol monomethyl ether (AME), and altenuene (ALT), although to a lesser extent. AME production significantly varied among the six morphotypes. The expression of pksJ/pksH, biosynthetic genes of AOH/AME, was not correlated with actual toxin production, but it was significantly different between the two genotypes and among the four clades. Finally, ten isolates proved to express the biosynthetic genes of ACTT1 phytotoxin, and thus to be included in the Alternaria pathotype tangerine. A significant correlation between pathogenicity on leaves and ACTT1 gene expression was recorded. The latter was significantly dependent on geographical origin. The widespread occurrence of Alternaria spp. on citrus fruit and their ability to producemycotoxins might represent a serious concern for producers and consumers.
File in questo prodotto:
File Dimensione Formato  
Garganese_2016_Plos One_Characterization_editor.pdf

accesso aperto

Descrizione: Versione editoriale - OPEN ACCESS
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/723
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 40
social impact