The existence of bounded Palais–Smale sequences (briefly BPS) for functionals dependingon a parameter belonging to a real interval and which are the sum of a locally Lipschitzcontinuous term and of a convex, proper, lower semicontinuous function, is obtained whenthe parameter runs in a full measure subset of the given interval. Specifically, for this class ofnon-smooth functions, we obtain BPS related to mountain pass and to global infima levels.This is done by developing a unifying approach, which applies to both cases and relies on a suitable deformation lemma.

Bounded Palais-Smale sequence for non differentiable functions / Candito, Pasquale; Livrea, R; Motreanu, D. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 74:16(2011), pp. 5446-5454. [10.1016/j.na.2011.05.030]

Bounded Palais-Smale sequence for non differentiable functions

CANDITO, Pasquale
;
2011-01-01

Abstract

The existence of bounded Palais–Smale sequences (briefly BPS) for functionals dependingon a parameter belonging to a real interval and which are the sum of a locally Lipschitzcontinuous term and of a convex, proper, lower semicontinuous function, is obtained whenthe parameter runs in a full measure subset of the given interval. Specifically, for this class ofnon-smooth functions, we obtain BPS related to mountain pass and to global infima levels.This is done by developing a unifying approach, which applies to both cases and relies on a suitable deformation lemma.
2011
bounded Palais-Smale sequences; critical point theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/7564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact