In this work we prove that the solutions ${\scriptstyle u\in L^{q}(-T,0,H^{1,q}(\Omega,\RR^{N}))\cap C^{0,\lambda}(\overline{\!Q},\RR^{N})}$ ${\scriptstyle (1<q<2,\,0<\lambda<1,\,Q=\Omega\times]-T,0[,\,N\, \hbox{\piccoloit integer}\, >1)}$ to the second order nonlinear parabolic system of variational type $${\scriptstyle -\sum_{j=1}^{n}D_{j}a^{j}(X,u,Du)+{\partial u\over\partial t}= B^{0}(X,u,Du)\;,\quad X=(x,t)\in Q\,,}$$ belong to the space ${\scriptstyle L^{q}(-a,0,H^{2,q}_{\loc}(\Omega,\RR^{N}))\cap H^{1,q}(-a,0,L^{q}_{\loc}(\Omega,\RR^{N}))}$, for all ${\scriptstyle a\in]0,T[}$, provided suitable hypotheses of ${\scriptstyle q}$-nonlinearity ${\scriptstyle (1<q<2)}$ on the coefficients are adopted.

Interior Differentiability Results for Nonlinear Variational Parabolic Systems with Nonlinearity q in ]1,2[ / Fattorusso, Luisa Angela Maria; M., Marino. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5446. - vol 8:1(2011), pp. 97-112-112. [10.1007/s 00009-010-0038-z]

Interior Differentiability Results for Nonlinear Variational Parabolic Systems with Nonlinearity q in ]1,2[

FATTORUSSO, Luisa Angela Maria;
2011-01-01

Abstract

In this work we prove that the solutions ${\scriptstyle u\in L^{q}(-T,0,H^{1,q}(\Omega,\RR^{N}))\cap C^{0,\lambda}(\overline{\!Q},\RR^{N})}$ ${\scriptstyle (11)}$ to the second order nonlinear parabolic system of variational type $${\scriptstyle -\sum_{j=1}^{n}D_{j}a^{j}(X,u,Du)+{\partial u\over\partial t}= B^{0}(X,u,Du)\;,\quad X=(x,t)\in Q\,,}$$ belong to the space ${\scriptstyle L^{q}(-a,0,H^{2,q}_{\loc}(\Omega,\RR^{N}))\cap H^{1,q}(-a,0,L^{q}_{\loc}(\Omega,\RR^{N}))}$, for all ${\scriptstyle a\in]0,T[}$, provided suitable hypotheses of ${\scriptstyle q}$-nonlinearity ${\scriptstyle (1
2011
Non linear parabolic systems; interior differentiability; interpolation inequalities
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/7624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact