Experimental trials of anaerobic digestion of olive mill wastewater (OMW) blended with other agro-industrial by-products were carried out to evaluate biogas production and sensitivity of the process to inhibiting compounds. Blends containing different percentages of OMW, digested liquid manure, and citrus peel were subjected to a batch anaerobic digestion process under both mesophilic and thermophilic conditions. The results showed that blends with percentages of OMW higher than 20% (v/v) had low methane yields due high concentrations of polyphenols (PPs) and/or volatile fatty acids (concentrations above 0.8 g kg–1 and 2.4 g L–1, respectively). The addition of other substrates such as citrus peel may have induced synergic inhibiting effects of PPs and essential oils (EO) on microbial growth. Thermophilic processes were more sensitive to these inhibiting compounds than mesophilic processes. The results of this study suggest that reducing PPs and EO concentrations in blends subject to anaerobic digestion below the inhibiting concentrations of 0.6 g L–1 and 0.5 g kg–1, respectively, is suitable. Additionally, it is advisable to maintain the volatile fatty acids content below 2 g L–1 to avoid its evident toxic effects on the growth of microorganisms in biochemical processes.

Limiting factors for anaerobic digestion of olive mill wastewater blends under mesophilic and thermophilic conditions

Zema DA;Benalia S;Zimbalatti G;Tamburino V;Bernardi B.
2018-01-01

Abstract

Experimental trials of anaerobic digestion of olive mill wastewater (OMW) blended with other agro-industrial by-products were carried out to evaluate biogas production and sensitivity of the process to inhibiting compounds. Blends containing different percentages of OMW, digested liquid manure, and citrus peel were subjected to a batch anaerobic digestion process under both mesophilic and thermophilic conditions. The results showed that blends with percentages of OMW higher than 20% (v/v) had low methane yields due high concentrations of polyphenols (PPs) and/or volatile fatty acids (concentrations above 0.8 g kg–1 and 2.4 g L–1, respectively). The addition of other substrates such as citrus peel may have induced synergic inhibiting effects of PPs and essential oils (EO) on microbial growth. Thermophilic processes were more sensitive to these inhibiting compounds than mesophilic processes. The results of this study suggest that reducing PPs and EO concentrations in blends subject to anaerobic digestion below the inhibiting concentrations of 0.6 g L–1 and 0.5 g kg–1, respectively, is suitable. Additionally, it is advisable to maintain the volatile fatty acids content below 2 g L–1 to avoid its evident toxic effects on the growth of microorganisms in biochemical processes.
2018
Agro-industrial by-product; anaerobic digestion; biogas; inhibiting compounds; methane yield; polyphenols
File in questo prodotto:
File Dimensione Formato  
Zema_2018_JAE_Limiting_editor.pdf

accesso aperto

Descrizione: Versione dell'editore - OPEN ACCESS
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 850.06 kB
Formato Adobe PDF
850.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact