Alzheimer's disease (AD) is a neurodegenerative disorder that causes a loss of connections between neurons. The goal of this paper is to construct a complex network model of the brain-electrical activity, using high-density EEG (HD-EEG) recordings, and to compare the network organization in AD, mild cognitive impaired (MCI), and healthy control (CNT) subjects. The HD-EEG of 16 AD, 16 MCI, and 12 CNT was recorded during an eye-closed resting state. The permutation disalignment index (PDI) was used to describe the dissimilarity between EEG signals and to construct the connection matrices of the network model. The three groups were found to have significantly different (p < 0.001) characteristic path length (λ), average clustering coefficient (CC), and the global efficiency (GE). This is the first time that HD-EEG signals of AD, MCI, and CNT have been compared and that PDI has been used to discriminate between the three groups. Considering the large amount of data originating from HD-EEG acquisition, compared to standard EEG, the aim of this paper is also to assess that compression did not alter the results of the complex network analysis. Compressive sensing was adopted to compress and reconstruct the HD-EEG signals with minimal information loss, achieving an average structural similarity index of 0.954 (AD), 0.957 (MCI), and 0.959 (CNT). When applied to the reconstructed HD-EEG, complex network analysis provided a substantially unaltered performance, compared to the analysis of the original signals: λ, CC, and GE of the three groups were indeed still significantly different (p < 0.001).
Brain Network Analysis of Compressive Sensed High-Density EEG Signals in AD and MCI Subjects / Mammone, N; De Salvo, S; Bonanno, L; Ieracitano, C; Marino, S; Marra, A; Bramanti, A; Morabito, Francesco Carlo. - In: IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. - ISSN 1551-3203. - 15:1(2019), pp. 8453835.527-8453835.536. [10.1109/TII.2018.2868431]
Brain Network Analysis of Compressive Sensed High-Density EEG Signals in AD and MCI Subjects
Mammone N;Ieracitano C;MORABITO, Francesco Carlo
2019-01-01
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes a loss of connections between neurons. The goal of this paper is to construct a complex network model of the brain-electrical activity, using high-density EEG (HD-EEG) recordings, and to compare the network organization in AD, mild cognitive impaired (MCI), and healthy control (CNT) subjects. The HD-EEG of 16 AD, 16 MCI, and 12 CNT was recorded during an eye-closed resting state. The permutation disalignment index (PDI) was used to describe the dissimilarity between EEG signals and to construct the connection matrices of the network model. The three groups were found to have significantly different (p < 0.001) characteristic path length (λ), average clustering coefficient (CC), and the global efficiency (GE). This is the first time that HD-EEG signals of AD, MCI, and CNT have been compared and that PDI has been used to discriminate between the three groups. Considering the large amount of data originating from HD-EEG acquisition, compared to standard EEG, the aim of this paper is also to assess that compression did not alter the results of the complex network analysis. Compressive sensing was adopted to compress and reconstruct the HD-EEG signals with minimal information loss, achieving an average structural similarity index of 0.954 (AD), 0.957 (MCI), and 0.959 (CNT). When applied to the reconstructed HD-EEG, complex network analysis provided a substantially unaltered performance, compared to the analysis of the original signals: λ, CC, and GE of the three groups were indeed still significantly different (p < 0.001).File | Dimensione | Formato | |
---|---|---|---|
paper_IEEE_TII_pre_proof.pdf
non disponibili
Descrizione: Articolo
Tipologia:
Documento in Post-print
Licenza:
Non pubblico (Accesso privato/ristretto)
Dimensione
585.74 kB
Formato
Adobe PDF
|
585.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.