With the resonant photomeission technique we investigated the valence bands of FePS3 and NiPS3. The experimental results, support the ionic picture of the compounds and our previous identification of the valence band structures. The structures rapidly varying in intensity when the excitation energy is scanned across the Fe and NiM 2,3 absorption edge are associated to the transition metal 3d states; the nonresonating features are ascribed to the (P2P6)4− cluster states. With the yield technique we measured the high-resolution absorption spectra of the phosphorus and sulphur inner-core levels in Mn, Fe and Ni thiophosphates. TheL 2,3(P) andL 2,3(S) spectra are similar to each other in all the compounds and are interpreted in terms of the projected density of states of the conduction bands derived from the (P2S6)4− cluster states.
“Valence and conduction bands in MPS3 layered compounds studied by synchrotron radiation” / V., Grasso; Santangelo, Saveria; M., Piacentini. - In: IL NUOVO CIMENTO DELLA SOCIETÀ ITALIANA DI FISICA. B, GENERAL PHYSICS, RELATIVITY, ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS. - ISSN 1594-9982. - D8:(1986), pp. 263-278. [10.1007/BF02450740]
“Valence and conduction bands in MPS3 layered compounds studied by synchrotron radiation”
SANTANGELO, Saveria;
1986-01-01
Abstract
With the resonant photomeission technique we investigated the valence bands of FePS3 and NiPS3. The experimental results, support the ionic picture of the compounds and our previous identification of the valence band structures. The structures rapidly varying in intensity when the excitation energy is scanned across the Fe and NiM 2,3 absorption edge are associated to the transition metal 3d states; the nonresonating features are ascribed to the (P2P6)4− cluster states. With the yield technique we measured the high-resolution absorption spectra of the phosphorus and sulphur inner-core levels in Mn, Fe and Ni thiophosphates. TheL 2,3(P) andL 2,3(S) spectra are similar to each other in all the compounds and are interpreted in terms of the projected density of states of the conduction bands derived from the (P2S6)4− cluster states.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.