We study a parametric nonlinear periodic problem driven by the scalar p-Laplacian. We show that if lambda^1 > 0 is the first eigenvalue of the periodicscalar p-Laplacian and lambda>lambda^1, then the problem has at least three nontrivial solutions one positive, one negative and the third nodal. Our approach is variational together with suitable truncation, perturbation and comparisontechniques.

A nonlinear eigenvalue problem for the periodic scalar p-Laplacian / Barletta, Giuseppina; Livrea, R; Papageorgiou, N. S.. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 13:3(2014), pp. 1075-1086. [10.3934/cpaa.2014.13.1075]

A nonlinear eigenvalue problem for the periodic scalar p-Laplacian

BARLETTA, Giuseppina
;
2014-01-01

Abstract

We study a parametric nonlinear periodic problem driven by the scalar p-Laplacian. We show that if lambda^1 > 0 is the first eigenvalue of the periodicscalar p-Laplacian and lambda>lambda^1, then the problem has at least three nontrivial solutions one positive, one negative and the third nodal. Our approach is variational together with suitable truncation, perturbation and comparisontechniques.
2014
Constant sign and nodal solutions; parametric equation; extremal solutions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/8023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact