In the paper, we analyze the necessary efficiency conditions for scalar, vectorial and vector fractional variational problems using curvilinear integrals as objectives and we establish sufficient conditions of efficiency to the above variational problems. The efficiency sufficient conditions use of notions of the geodesic invex set and of (strictly, monotonic) (ρ, b)-geodesic quasiinvex functions.

Efficiency for vector variational quotient problems with curvilinear integrals on riemannian manifolds via geodesic quasiinvexity / Ciano, T.; Ferrara, Massimiliano; Mititelu, S.; Pansera, B. A.. - In: MATHEMATICS. - ISSN 2227-7390. - 8:7(2020), p. 1054. [10.3390/MATH8071054]

Efficiency for vector variational quotient problems with curvilinear integrals on riemannian manifolds via geodesic quasiinvexity

Ciano T.;Ferrara Massimiliano
;
Pansera B. A.
2020-01-01

Abstract

In the paper, we analyze the necessary efficiency conditions for scalar, vectorial and vector fractional variational problems using curvilinear integrals as objectives and we establish sufficient conditions of efficiency to the above variational problems. The efficiency sufficient conditions use of notions of the geodesic invex set and of (strictly, monotonic) (ρ, b)-geodesic quasiinvex functions.
2020
Curvilinear integrals
Efficient solution
Geodesic quasiinvexity
Riemannian manifolds
File in questo prodotto:
File Dimensione Formato  
mathematics-08-01054-v2 (1).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 302.73 kB
Formato Adobe PDF
302.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/81349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact