Results in literature show that the convergence of the STLmax (Short Term Maximum Lyapunov Exponent) time series, extracted from intracranial EEG of patients affected by intractable temporal lobe epilepsy, is linked to the seizure onset. Moreover, the trend of the convergence allows for the automatic detection of the electrodes involved in the process leading to the seizure. ATSWA (Adaptive Threshold Seizure Warning Algorithm) is an advance seizure warning algorithm based on STLmax convergence.

Analysis of the Dynamics of Human Epileptic Seizures from Scalp EEG

LA FORESTA, Fabio;Mammone N;MORABITO, Francesco Carlo;
2009

Abstract

Results in literature show that the convergence of the STLmax (Short Term Maximum Lyapunov Exponent) time series, extracted from intracranial EEG of patients affected by intractable temporal lobe epilepsy, is linked to the seizure onset. Moreover, the trend of the convergence allows for the automatic detection of the electrodes involved in the process leading to the seizure. ATSWA (Adaptive Threshold Seizure Warning Algorithm) is an advance seizure warning algorithm based on STLmax convergence.
EEG; STLmax; Epileptic Seizures
File in questo prodotto:
File Dimensione Formato  
EPILEPSIA_vol_50_2009.pdf

non disponibili

Licenza: Non specificato
Dimensione 30.62 kB
Formato Adobe PDF
30.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/8299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact