This article concerns a class of nonlocal fractional Laplacian problems depending of three real parameters. More precisely, by using an appropriate analytical context on fractional Sobolev spaces due to Servadei and Valdinoci (in order to correctly encode the Dirichlet boundary datum in the variational formulation of our problem) we establish the existence of three weak solutions for fractional equations via a recent abstract critical point result for differentiable and parametric functionals recently proved by Ricceri.

Three weak solutions for nonlocal fractional equations / Bisci, G. M.; Pansera, B. A.. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - 14:3(2014), pp. 619-629. [10.1515/ans-2014-0306]

Three weak solutions for nonlocal fractional equations

Pansera B. A.
2014-01-01

Abstract

This article concerns a class of nonlocal fractional Laplacian problems depending of three real parameters. More precisely, by using an appropriate analytical context on fractional Sobolev spaces due to Servadei and Valdinoci (in order to correctly encode the Dirichlet boundary datum in the variational formulation of our problem) we establish the existence of three weak solutions for fractional equations via a recent abstract critical point result for differentiable and parametric functionals recently proved by Ricceri.
2014
Critical points results
Fractional equations
Multiple solutions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/83129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? ND
social impact