Two variations of Arhangelskii's inequality (Formula presented.) for Hausdorff X [Arhangel'skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967-970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333-343] are extended to the classes with finite Urysohn number or finite Hausdorff number. © 2014 Versita Warsaw and Springer-Verlag Wien.

On the cardinality of n-Urysohn and n-Hausdorff spaces / Bonanzinga, M.; Cuzzupe, M. V.; Pansera, B. A.. - In: CENTRAL EUROPEAN JOURNAL OF MATHEMATICS. - ISSN 1895-1074. - 12:2(2014), pp. 330-336. [10.2478/s11533-013-0339-0]

On the cardinality of n-Urysohn and n-Hausdorff spaces

Pansera B. A.
2014-01-01

Abstract

Two variations of Arhangelskii's inequality (Formula presented.) for Hausdorff X [Arhangel'skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967-970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333-343] are extended to the classes with finite Urysohn number or finite Hausdorff number. © 2014 Versita Warsaw and Springer-Verlag Wien.
2014
clHθ-operator
Hausdorff number of a space
Urysohn number of a space
θ-closure
Almost Lindelöf degree of a space
cl H-operator
Relative Lindelöf number
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/83134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact