In this paper we study the existence and multiplicity of solutions for a second order nonautonumous periodic system with a nonsmooth potential. We prove two existence theorems and a multiplicity result. In the first existence theorem the Euler functional is coercive and the solution is a minimizer of it. In the second existence theorem the Euler functional is unbounded and the solution is obtained using the saddle point theorem. Finally for the multiplicity result we employ a nonsmooth version of the local linking theorem.
Titolo: | Nonautonomous second order periodic systems: existence and multiplicity of solutions |
Autori: | |
Data di pubblicazione: | 2007 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.12318/839 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.