In this paper, a delayed nonresident computer virus model with graded infection rate is considered in which the following assumption is imposed: latent computers have lower infection ability than infectious computers. With the aid of the bifurcation theory, sufficient conditions for stability of the infected equilibrium of the model and existence of the Hopf bifurcation are established. In particular, explicit formulae which determine direction and stability of the Hopf bifurcation are derived by means of the normal form theory and the center manifold reduction for functional differential equations. Finally, a numerical example is given in order to show the feasibility of the obtained theoretical findings.

Hopf Bifurcation of a Nonresident Computer Virus Model with Delay

FERRARA, Massimiliano;
2018

Abstract

In this paper, a delayed nonresident computer virus model with graded infection rate is considered in which the following assumption is imposed: latent computers have lower infection ability than infectious computers. With the aid of the bifurcation theory, sufficient conditions for stability of the infected equilibrium of the model and existence of the Hopf bifurcation are established. In particular, explicit formulae which determine direction and stability of the Hopf bifurcation are derived by means of the normal form theory and the center manifold reduction for functional differential equations. Finally, a numerical example is given in order to show the feasibility of the obtained theoretical findings.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12318/866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact