The recent growing interest in indoor positioning applications has paved the way for the development of new and more accurate positioning techniques. The envisioned applications, include people and asset tracking, indoor navigation, as well as other emerging market applications, require fast and precise positioning. To this end, the effectiveness and high accuracy and refresh rate of positioning systems based on ultrasonic signals have been already demonstrated. Typically, positioning is obtained by combining multiple ranging. In this work, it is shown that the performance of a given ultrasonic airborne ranging technique can be thoroughly analyzed using renowned academic acoustic simulation software, originally conceived for the simulation of echographic transducers and systems. Here, in order to show that the acoustic simulation software can be profitably applied to ranging systems in air, an example is provided. Simulations are performed for a typical ultrasonic chirp, from an ultrasound emitter, in a typical office room. The ranging performances are evaluated, including the effects of acoustic diffraction and air frequency dependent absorption, when the signal-to-noise ratio (SNR) decreases from 30 to −20 dB. The ranging error, computed over a point grid in the space, and the ranging cumulative error distribution is shown for different SNR levels. The proposed approach allowed us to estimate a ranging error of about 0.34 mm when the SNR is greater than 0 dB. For SNR levels down to −10 dB, the cumulative error distribution shows an error below 5 mm, while for lower SNR, the error can be unlimited.

Acoustic simulation for performance evaluation of ultrasonic ranging systems / Carotenuto, R.; Pezzimenti, F.; Della Corte, F. G.; Iero, D.; Merenda, M.. - In: ELECTRONICS. - ISSN 2079-9292. - 10:11(2021), pp. 1-9. [10.3390/electronics10111298]

Acoustic simulation for performance evaluation of ultrasonic ranging systems

Carotenuto R.
;
Pezzimenti F.;Della Corte F. G.;Iero D.;Merenda M.
2021-01-01

Abstract

The recent growing interest in indoor positioning applications has paved the way for the development of new and more accurate positioning techniques. The envisioned applications, include people and asset tracking, indoor navigation, as well as other emerging market applications, require fast and precise positioning. To this end, the effectiveness and high accuracy and refresh rate of positioning systems based on ultrasonic signals have been already demonstrated. Typically, positioning is obtained by combining multiple ranging. In this work, it is shown that the performance of a given ultrasonic airborne ranging technique can be thoroughly analyzed using renowned academic acoustic simulation software, originally conceived for the simulation of echographic transducers and systems. Here, in order to show that the acoustic simulation software can be profitably applied to ranging systems in air, an example is provided. Simulations are performed for a typical ultrasonic chirp, from an ultrasound emitter, in a typical office room. The ranging performances are evaluated, including the effects of acoustic diffraction and air frequency dependent absorption, when the signal-to-noise ratio (SNR) decreases from 30 to −20 dB. The ranging error, computed over a point grid in the space, and the ranging cumulative error distribution is shown for different SNR levels. The proposed approach allowed us to estimate a ranging error of about 0.34 mm when the SNR is greater than 0 dB. For SNR levels down to −10 dB, the cumulative error distribution shows an error below 5 mm, while for lower SNR, the error can be unlimited.
2021
Acoustic attenuation
Acoustic diffraction
Acoustic simulation
Ranging error
SNR levels
Ultrasonic ranging
File in questo prodotto:
File Dimensione Formato  
Carotenuto2021_electronics-10-01298.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/105887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact