Background: Plant viral infections induce changes in the host plant, which can potentially impact composition, organoleptic properties, and storability characteristics of plant products. In particular, onion odor and flavor are determined mainly by volatile organic compounds, and changes upon infection with onion yellow dwarf virus may deeply influence these characters. Methods: A time-course study of volatile organic compounds in onion yellow dwarf virus-infected versus healthy ‘Rossa di Tropea’ onion bulbs was performed using headspace solid-phase microextraction gas chromatography–mass spectrometry; sensory analysis performed at marketability stage of onion production was used to correlate such changes to the taste characteristics perceived by consumers. Results: Volatile organic compounds regulated in infection conditions were identified, mainly belonging to mono- and poly-sulfides classes. The most abundant compounds in the analyzed samples were propyl disulfide, allyl-isopropyl disulfide, and propanethiol; significantly different concentrations were observed for 7 out of 11 VOCs in virus-infected compared to healthy bulbs. Statistical analysis based on a partial least squares discriminant analysis model and hierarchical cluster analysis allowed us to cluster samples based on phytosanitary status and storage time and to identify the most responsible compounds for such classification. Conclusions: Onion yellow dwarf virus infection induces changes in volatile organic compounds in onion during storage. The impact of such regulated compounds on ‘Rossa di Tropea’ onion odor and flavor and correlation with sensory analysis are discussed.
Characterization of volatile organic compounds in ‘rossa di tropea’ onion by means of headspace solid-phase microextraction gas chromatography–mass spectrometry (Hs/spme gc–ms) and sensory analysis / Taglienti, Anna; Araniti, Fabrizio; Piscopo, Amalia Rosa Maria; Tiberini, Antonio. - In: AGRONOMY. - ISSN 2073-4395. - 11:5(2021), p. 874. [10.3390/agronomy11050874]
Characterization of volatile organic compounds in ‘rossa di tropea’ onion by means of headspace solid-phase microextraction gas chromatography–mass spectrometry (Hs/spme gc–ms) and sensory analysis
Amalia Piscopo;
2021-01-01
Abstract
Background: Plant viral infections induce changes in the host plant, which can potentially impact composition, organoleptic properties, and storability characteristics of plant products. In particular, onion odor and flavor are determined mainly by volatile organic compounds, and changes upon infection with onion yellow dwarf virus may deeply influence these characters. Methods: A time-course study of volatile organic compounds in onion yellow dwarf virus-infected versus healthy ‘Rossa di Tropea’ onion bulbs was performed using headspace solid-phase microextraction gas chromatography–mass spectrometry; sensory analysis performed at marketability stage of onion production was used to correlate such changes to the taste characteristics perceived by consumers. Results: Volatile organic compounds regulated in infection conditions were identified, mainly belonging to mono- and poly-sulfides classes. The most abundant compounds in the analyzed samples were propyl disulfide, allyl-isopropyl disulfide, and propanethiol; significantly different concentrations were observed for 7 out of 11 VOCs in virus-infected compared to healthy bulbs. Statistical analysis based on a partial least squares discriminant analysis model and hierarchical cluster analysis allowed us to cluster samples based on phytosanitary status and storage time and to identify the most responsible compounds for such classification. Conclusions: Onion yellow dwarf virus infection induces changes in volatile organic compounds in onion during storage. The impact of such regulated compounds on ‘Rossa di Tropea’ onion odor and flavor and correlation with sensory analysis are discussed.File | Dimensione | Formato | |
---|---|---|---|
Taglienti_2021_Agronomy_Characterization_editor.pdf
accesso aperto
Descrizione: versione dell'editore - OPEN ACCESS
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.