Abstract: Several thrips species (Insecta, Thysanoptera) are globally known as important crop pests and vectors of viral diseases, but their identification is dicult because of their small body size and inconspicuous morphological dierences. Sequencing variation in the mitochondrial cytochrome c oxidase I (COI) region has been proven to be useful for the identification of species of many groups of insect pests. Here, DNA barcoding has been used to identify thrips species collected with the use of sticky traps placed in an open onion field. A total of 238 thrips specimens were analyzed, 151 of which could be identified to species and 27 to genera belonging to the family Thripidae. Fifty-one specimens could not be assigned to any genus, with the closest BLAST match in the GenBank queries being below 98%, whilst six specimens were not recognized as Thysanoptera. The results indicate that, although there are a few pest thrips species not yet barcoded, most of the species that may cause damage to crops in Europe are represented in GenBank and other databases, enabling correct identification. Additionally, DNA barcoding can be considered a valuable alternative to the classic morphology method for identification of major thrips species.

DNA Barcoding:a reliable method for the identification of the thrips species (Thysanoptera,Thripidae) collected on stcky traps in onion fields.

Rita Marullo
Conceptualization
;
Gregorio Vono
Membro del Collaboration Group
2020-01-01

Abstract

Abstract: Several thrips species (Insecta, Thysanoptera) are globally known as important crop pests and vectors of viral diseases, but their identification is dicult because of their small body size and inconspicuous morphological dierences. Sequencing variation in the mitochondrial cytochrome c oxidase I (COI) region has been proven to be useful for the identification of species of many groups of insect pests. Here, DNA barcoding has been used to identify thrips species collected with the use of sticky traps placed in an open onion field. A total of 238 thrips specimens were analyzed, 151 of which could be identified to species and 27 to genera belonging to the family Thripidae. Fifty-one specimens could not be assigned to any genus, with the closest BLAST match in the GenBank queries being below 98%, whilst six specimens were not recognized as Thysanoptera. The results indicate that, although there are a few pest thrips species not yet barcoded, most of the species that may cause damage to crops in Europe are represented in GenBank and other databases, enabling correct identification. Additionally, DNA barcoding can be considered a valuable alternative to the classic morphology method for identification of major thrips species.
2020
Keywords: pest thrips; sticky traps; species identification; COI sequences; DNA barcoding; haplotype diversity
File in questo prodotto:
File Dimensione Formato  
Marullo et al.DNA Barcoding.insects2020.-11-00489 (5) (1).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/119823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact