In this paper we study a monomial module M generated by an s-sequence and the main algebraic and homological invariants of the symmetric algebra of M. We show that the first syzygy module of a finitely generated module M, over any commutative Noetherian ring with unit, has a specific initial module with respect to an admissible order, provided M is generated by an s-sequence. Significant examples complement the results.

S-sequences and monomial modules / Failla, G.; Stagliano, P. L.. - In: MATHEMATICS. - ISSN 2227-7390. - 9:21(2021), p. 2659. [10.3390/math9212659]

S-sequences and monomial modules

Failla G.
Writing – Original Draft Preparation
;
2021-01-01

Abstract

In this paper we study a monomial module M generated by an s-sequence and the main algebraic and homological invariants of the symmetric algebra of M. We show that the first syzygy module of a finitely generated module M, over any commutative Noetherian ring with unit, has a specific initial module with respect to an admissible order, provided M is generated by an s-sequence. Significant examples complement the results.
2021
Gröbner bases
Monomial modules
Symmetric algebra
File in questo prodotto:
File Dimensione Formato  
s-Sequences_and_Monomial_Modules.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 285.35 kB
Formato Adobe PDF
285.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/122630
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact