The SCS-CN, Horton, and USLE-family models are widely used to predict and control runoff and erosion in forest ecosystems. However, in the literature there is no evidence of their use in Mediterranean forests subjected to prescribed fire and soil mulching. To fill this gap, this study evaluates the prediction capability for runoff and soil loss of the SCS-CN, Horton, MUSLE, and USLEM models in three forests (pine, chestnut, and oak) in Southern Italy. The investigation was carried out at plot and event scales throughout one year, after a prescribed fire and post-fire soil mulching with fern. The SCS-CN and USLE-M models were accurate in predicting runoff volume and soil loss, respectively. In contrast, poor predictions of the modelled hydrological variables were provided by the models in unburned plots, and by the Horton and MUSLE models for all soil conditions. This inaccuracy may have been due to the fact that the runoff and erosion generation mechanisms were saturation-excess and rainsplash, while the Horton and MUSLE models better simulate infiltrationexcess and overland flow processes, respectively. For the SCS-CN and USLE-M models, calibration was needed to obtain accurate predictions of surface runoff and soil loss; furthermore, different CNs and C factors must be input throughout the year to simulate the variability of the hydrological response of soil after fire. After calibration, two sets of CNs and C-factor values were suggested for applications of the SCS-CN and USLE-M models, after prescribed fire and fern mulching in Mediterranean forests. Once validated in a wider range of environmental contexts, these models may support land managers in controlling the hydrology of Mediterranean forests that are prone to wildfire risks.

Modelling the event-based hydrological response of mediterranean forests to prescribed fire and soil mulching with fern using the curve number, horton and USLE-Family (universal soil loss equation) models

Carra B. G.;Bombino G.;Zema D. A.
2021-01-01

Abstract

The SCS-CN, Horton, and USLE-family models are widely used to predict and control runoff and erosion in forest ecosystems. However, in the literature there is no evidence of their use in Mediterranean forests subjected to prescribed fire and soil mulching. To fill this gap, this study evaluates the prediction capability for runoff and soil loss of the SCS-CN, Horton, MUSLE, and USLEM models in three forests (pine, chestnut, and oak) in Southern Italy. The investigation was carried out at plot and event scales throughout one year, after a prescribed fire and post-fire soil mulching with fern. The SCS-CN and USLE-M models were accurate in predicting runoff volume and soil loss, respectively. In contrast, poor predictions of the modelled hydrological variables were provided by the models in unburned plots, and by the Horton and MUSLE models for all soil conditions. This inaccuracy may have been due to the fact that the runoff and erosion generation mechanisms were saturation-excess and rainsplash, while the Horton and MUSLE models better simulate infiltrationexcess and overland flow processes, respectively. For the SCS-CN and USLE-M models, calibration was needed to obtain accurate predictions of surface runoff and soil loss; furthermore, different CNs and C factors must be input throughout the year to simulate the variability of the hydrological response of soil after fire. After calibration, two sets of CNs and C-factor values were suggested for applications of the SCS-CN and USLE-M models, after prescribed fire and fern mulching in Mediterranean forests. Once validated in a wider range of environmental contexts, these models may support land managers in controlling the hydrology of Mediterranean forests that are prone to wildfire risks.
2021
Calibration
Chestnut
Erosion
Hydrological modeling
Oak
Pine
Runoff
Soil loss
File in questo prodotto:
File Dimensione Formato  
Carrà_2021_Modelling_Editor.pdf

accesso aperto

Descrizione: Versione dell'editore - OPEN ACCESS
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.34 MB
Formato Adobe PDF
5.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/123360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact