Existence of two solutions to a parametric singular quasi-linear elliptic problem is proved. The equation is driven by the phi-Laplacian operator, and the reaction term can be nonmonotone. The main tools employed are the local minimum theorem and the Mountain pass theorem, together with the truncation technique. Global C-1,C- tau regularity of solutions is also investigated, chiefly via a priori estimates and perturbation techniques.

Existence of two solutions for singular Phi-Laplacian problems / Candito, P; Guarnotta, U; Livrea, R. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - 22:1(2022), pp. 659-683. [10.1515/ans-2022-0037]

Existence of two solutions for singular Phi-Laplacian problems

Candito, P;
2022-01-01

Abstract

Existence of two solutions to a parametric singular quasi-linear elliptic problem is proved. The equation is driven by the phi-Laplacian operator, and the reaction term can be nonmonotone. The main tools employed are the local minimum theorem and the Mountain pass theorem, together with the truncation technique. Global C-1,C- tau regularity of solutions is also investigated, chiefly via a priori estimates and perturbation techniques.
2022
phi-Laplacian
Sobolev-Orlicz spaces
singular terms
variational methods
File in questo prodotto:
File Dimensione Formato  
2. Candito Guarnotta Livrea Advanced Non Anal 2022.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/135567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact