We establish some existence and regularity results to the Dirichlet problem, for a class of quasilinear elliptic equations involving a partial differential operator, depending on the gradient of the solution. Our results are formulated in the Orlicz–Sobolev spaces and under general growth conditions on the convection term. The sub- and supersolutions method is a key tool in the proof of the existence results.

Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces / Barletta, G.; Tornatore, E.. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - (2023). [10.1002/mana.202100398]

Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces

Barletta G.
Membro del Collaboration Group
;
2023-01-01

Abstract

We establish some existence and regularity results to the Dirichlet problem, for a class of quasilinear elliptic equations involving a partial differential operator, depending on the gradient of the solution. Our results are formulated in the Orlicz–Sobolev spaces and under general growth conditions on the convection term. The sub- and supersolutions method is a key tool in the proof of the existence results.
2023
gradient dependence
nonlinear elliptic equations
Orlicz–Sobolev spaces
sub-supersolution
File in questo prodotto:
File Dimensione Formato  
Barletta Tornatore 2 (2).pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 329.2 kB
Formato Adobe PDF
329.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/135868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact