Geomatics is important for agriculture 4.0; in fact, it uses different types of data (remote sensing from satellites, Unmanned Aerial Vehicles-UAVs, GNSS, photogrammetry, laser scanners and other types of data) and therefore it uses data fusion techniques depending on the different applications to be carried out. This work aims to present on a study area concerning the integration of data acquired (using data fusion techniques) from remote sensing techniques, UAVs, autonomous driving machines and data fusion, all reprocessed and visualised in terms of results obtained through GIS (Geographic Information System). In this work we emphasize the importance of the integration of different methodologies and data fusion techniques, managing data of a different nature acquired with different methodologies to optimise vineyard cultivation and production. In particular, in this note we applied (focusing on a vineyard) geomatics-type methodologies developed in other works and integrated here to be used and optimised in order to make a contribution to agriculture 4.0. More specifically, we used the NDVI (Normalized Difference Vegetation Index) applied to multispectral satellite images and drone images (suitably combined) to identify the vigour of the plants. We then used an autonomous guided vehicle (equipped with sensors and monitoring systems) which, by estimating the optimal path, allows us to optimise fertilisation, irrigation, etc., by data fusion techniques using various types of sensors. Everything is visualised on a GIS to improve the management of the field according to its potential, also using historical data on the environmental, climatic and socioeconomic characteristics of the area. For this purpose, experiments of different types of Geomatics carried out individually on other application cases have been integrated into this work and are coordinated and integrated here in order to provide research/application cues for Agriculture 4.0.

Experimenting Agriculture 4.0 with Sensors: A Data Fusion Approach between Remote Sensing, UAVs and Self-Driving Tractors

Barrile V.;Fotia A.;
2022-01-01

Abstract

Geomatics is important for agriculture 4.0; in fact, it uses different types of data (remote sensing from satellites, Unmanned Aerial Vehicles-UAVs, GNSS, photogrammetry, laser scanners and other types of data) and therefore it uses data fusion techniques depending on the different applications to be carried out. This work aims to present on a study area concerning the integration of data acquired (using data fusion techniques) from remote sensing techniques, UAVs, autonomous driving machines and data fusion, all reprocessed and visualised in terms of results obtained through GIS (Geographic Information System). In this work we emphasize the importance of the integration of different methodologies and data fusion techniques, managing data of a different nature acquired with different methodologies to optimise vineyard cultivation and production. In particular, in this note we applied (focusing on a vineyard) geomatics-type methodologies developed in other works and integrated here to be used and optimised in order to make a contribution to agriculture 4.0. More specifically, we used the NDVI (Normalized Difference Vegetation Index) applied to multispectral satellite images and drone images (suitably combined) to identify the vigour of the plants. We then used an autonomous guided vehicle (equipped with sensors and monitoring systems) which, by estimating the optimal path, allows us to optimise fertilisation, irrigation, etc., by data fusion techniques using various types of sensors. Everything is visualised on a GIS to improve the management of the field according to its potential, also using historical data on the environmental, climatic and socioeconomic characteristics of the area. For this purpose, experiments of different types of Geomatics carried out individually on other application cases have been integrated into this work and are coordinated and integrated here in order to provide research/application cues for Agriculture 4.0.
2022
agriculture 4.0; satellite imagery; sensor networks; unmanned aerial vehicles; vineyards
File in questo prodotto:
File Dimensione Formato  
Barrile-Fotia_2022_Sensors_Agriculture 4.0_editor.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/136066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact