In this paper, we consider a vertically positioned cylindrical filtering element. Filtering occurs in the radial direction, therefore, the direction of the velocities of the liquid and suspended particles coincide with this radial direction. The flow can be considered to be one-dimensional and radially axisymmetric. To describe such a filtering process, the axisymmetric Stefan problem will be formulated. The radial mass balance formalism and Darcy’s law are utilized to obtain a basic equation for cake filtration. The boundary condition at the moving surface is derived and the cake filtration is formulated in a Stefan problem. Equations are derived that describe the dynamics of cake growth in the cake filtration, and they are numerically solved. The influence of different model parameters on the compression and fluid pressure across the cake and the growth of its thickness are studied.
An Axi-Symmetric Problem of Suspensions Filtering with the Formation of a Cake Layer / Khuzhayorov, Bakhtiyor Kh.; Ibragimov, Gafurjan; Saydullaev, Usmonali; Pansera, Bruno Antonio. - In: SYMMETRY. - ISSN 2073-8994. - 15:6(2023). [10.3390/sym15061209]
An Axi-Symmetric Problem of Suspensions Filtering with the Formation of a Cake Layer
Pansera, Bruno Antonio
Formal Analysis
2023-01-01
Abstract
In this paper, we consider a vertically positioned cylindrical filtering element. Filtering occurs in the radial direction, therefore, the direction of the velocities of the liquid and suspended particles coincide with this radial direction. The flow can be considered to be one-dimensional and radially axisymmetric. To describe such a filtering process, the axisymmetric Stefan problem will be formulated. The radial mass balance formalism and Darcy’s law are utilized to obtain a basic equation for cake filtration. The boundary condition at the moving surface is derived and the cake filtration is formulated in a Stefan problem. Equations are derived that describe the dynamics of cake growth in the cake filtration, and they are numerically solved. The influence of different model parameters on the compression and fluid pressure across the cake and the growth of its thickness are studied.File | Dimensione | Formato | |
---|---|---|---|
Pansera_2023_Symmetry_Suspensions_editor.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.93 MB
Formato
Adobe PDF
|
3.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.