This study aimed to recover the phenols from olive oil mill wastewater, a major pollutant of the oil industry, by using spray-drying technology to produce a new feed with a nutraceutical value for animal feed supplementation and to evaluate its effect on the productivity and nutritional quality of ewe milk. Forty-five Sarda ewes in late lactation (150 +/- 2 d) and with homogeneous live weight (52 +/- 1.5 kg) were randomly allotted into three groups and fed with three dietary treatments containing increasing levels of polyphenols: 0% (C), 0.1% (T0.1), and 0.2% (T0.2) of dry matter. No effect of the dietary treatments was found on the milk yield and composition. Interestingly, milk urea content (p < 0.0001) and somatic cell counts (p < 0.001) decreased as the level of polyphenols inclusion in the diet increased. The inclusion of phenols (0.2% of dry matter) in the diet of sheep was effective in increasing the vaccenic (C18:1 trans-11) and rumenic acid (C18: cis-9 trans-11) levels, which are beneficial for human health. Finally, the recovery of polyphenols via spray-drying technology and their incorporation into a new fortified feed can be a valid strategy for naturally improving the nutritional value of milk while valorizing an oil industry byproduct, reducing environmental impact, and promoting waste reuse that is in line with circular economy principles.

Valorization of Olive Mill Byproducts: Recovery of Biophenol Compounds and Application in Animal Feed

Caparra P.
Writing – Review & Editing
;
2023-01-01

Abstract

This study aimed to recover the phenols from olive oil mill wastewater, a major pollutant of the oil industry, by using spray-drying technology to produce a new feed with a nutraceutical value for animal feed supplementation and to evaluate its effect on the productivity and nutritional quality of ewe milk. Forty-five Sarda ewes in late lactation (150 +/- 2 d) and with homogeneous live weight (52 +/- 1.5 kg) were randomly allotted into three groups and fed with three dietary treatments containing increasing levels of polyphenols: 0% (C), 0.1% (T0.1), and 0.2% (T0.2) of dry matter. No effect of the dietary treatments was found on the milk yield and composition. Interestingly, milk urea content (p < 0.0001) and somatic cell counts (p < 0.001) decreased as the level of polyphenols inclusion in the diet increased. The inclusion of phenols (0.2% of dry matter) in the diet of sheep was effective in increasing the vaccenic (C18:1 trans-11) and rumenic acid (C18: cis-9 trans-11) levels, which are beneficial for human health. Finally, the recovery of polyphenols via spray-drying technology and their incorporation into a new fortified feed can be a valid strategy for naturally improving the nutritional value of milk while valorizing an oil industry byproduct, reducing environmental impact, and promoting waste reuse that is in line with circular economy principles.
2023
circular economy
phenols
valorization of olive mill wastewater
File in questo prodotto:
File Dimensione Formato  
Valorization of Olive Mill Byproducts_Recovery of Biophenol Compounds and Application in Animal Feed.pdf

accesso aperto

Descrizione: Valorization of Olive Mill Byproducts: Recovery of Biophenol Compounds and Application in Animal Feed
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 648.77 kB
Formato Adobe PDF
648.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/140606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact