In this paper, the authors propose to use batteries to improve the performance of grid-connected photovoltaic plants when their photovoltaic fields are subject to partial shading phenomena. Particular attention is devoted to predictable and repetitive partial shadings, such as those that often appear in urban residential environments. Firstly, battery packs with proper nominal voltage and capacity are connected in parallel to partially shaded photovoltaic submodules. Then, the shaded photovoltaic submodules are properly disconnected and connected to the respective photovoltaic string by using a "battery control unit", which is operated by taking into account characteristics of the specific partial shading phenomenon to cope with. To demonstrate the effectiveness of the proposed technique, an experimental study is performed to compare the performances of two identical prototypal grid-connected photovoltaic generators subject to identical artificial and repetitive partial shadings. Only one of the photovoltaic generators is equipped with batteries together with their respective battery control unit, while the second one is simply equipped with conventional bypass diodes. The main advantages of the proposed technique are a greatly improved whole power generation together with the elimination of hotspot phenomena.

Experimenting with a Battery-Based Mitigation Technique for Coping with Predictable Partial Shading

Carbone R.
;
2022-01-01

Abstract

In this paper, the authors propose to use batteries to improve the performance of grid-connected photovoltaic plants when their photovoltaic fields are subject to partial shading phenomena. Particular attention is devoted to predictable and repetitive partial shadings, such as those that often appear in urban residential environments. Firstly, battery packs with proper nominal voltage and capacity are connected in parallel to partially shaded photovoltaic submodules. Then, the shaded photovoltaic submodules are properly disconnected and connected to the respective photovoltaic string by using a "battery control unit", which is operated by taking into account characteristics of the specific partial shading phenomenon to cope with. To demonstrate the effectiveness of the proposed technique, an experimental study is performed to compare the performances of two identical prototypal grid-connected photovoltaic generators subject to identical artificial and repetitive partial shadings. Only one of the photovoltaic generators is equipped with batteries together with their respective battery control unit, while the second one is simply equipped with conventional bypass diodes. The main advantages of the proposed technique are a greatly improved whole power generation together with the elimination of hotspot phenomena.
2022
PV plants
partial shadings
hotspot
bypass diodes
battery storage
File in questo prodotto:
File Dimensione Formato  
Carbone_2022_Energies_Experimenting_Editor.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.45 MB
Formato Adobe PDF
5.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/142169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact