This research delves into the integration of green roofs elements and parameters with Building Information Modeling (BIM), a pivotal advancement in sustainable urban construction. Aligning with the United Nations Sustainable Development Goals, particularly Goal 11, this study explores how this integration can address global challenges like climate change and resource depletion. Using the Dynamo Visual Programming Language within Autodesk Revit, this research develops a computational modeling approach for green roofs, focusing on their thermal and structural characteristics under varied environmental conditions. Key findings demonstrate the significant influence of substrate and drainage material combinations on green roofs' thermal performance, highlighting the need for tailored designs based on climatic conditions. This study also emphasizes the importance of considering structural performance in both dry and saturated conditions for overall building integrity. This research identifies gaps in current practices, such as limited focus on specific green roof materials and reliance on certain software tools, suggesting the need for broader material selection and software adaptability. Future research directions include expanding material selections, exploring diverse environmental conditions, and integrating green roofs elements and parameters with various BIM software platforms. This study's implications extend to stakeholders in the construction industry, offering a framework for architects, urban planners, and policymakers to design and implement green roofs aligned with environmental goals. This work contributes to the field by proposing a novel approach to sustainable construction, integrating ecological design with digital technology, and setting a new benchmark in the integration of green roofs design with BIM. By addressing these aspects, this research paves the way for future developments in sustainable urban construction, enhancing the efficiency, sustainability, and resilience of urban communities in line with global sustainability objectives.
Eco-Innovative Construction: Integrating Green Roofs Design within the BIM Framework / Cascone, S. - In: SUSTAINABILITY. - ISSN 2071-1050. - 16:5(2024), pp. 1-19. [10.3390/su16051967]
Eco-Innovative Construction: Integrating Green Roofs Design within the BIM Framework
Cascone S
2024-01-01
Abstract
This research delves into the integration of green roofs elements and parameters with Building Information Modeling (BIM), a pivotal advancement in sustainable urban construction. Aligning with the United Nations Sustainable Development Goals, particularly Goal 11, this study explores how this integration can address global challenges like climate change and resource depletion. Using the Dynamo Visual Programming Language within Autodesk Revit, this research develops a computational modeling approach for green roofs, focusing on their thermal and structural characteristics under varied environmental conditions. Key findings demonstrate the significant influence of substrate and drainage material combinations on green roofs' thermal performance, highlighting the need for tailored designs based on climatic conditions. This study also emphasizes the importance of considering structural performance in both dry and saturated conditions for overall building integrity. This research identifies gaps in current practices, such as limited focus on specific green roof materials and reliance on certain software tools, suggesting the need for broader material selection and software adaptability. Future research directions include expanding material selections, exploring diverse environmental conditions, and integrating green roofs elements and parameters with various BIM software platforms. This study's implications extend to stakeholders in the construction industry, offering a framework for architects, urban planners, and policymakers to design and implement green roofs aligned with environmental goals. This work contributes to the field by proposing a novel approach to sustainable construction, integrating ecological design with digital technology, and setting a new benchmark in the integration of green roofs design with BIM. By addressing these aspects, this research paves the way for future developments in sustainable urban construction, enhancing the efficiency, sustainability, and resilience of urban communities in line with global sustainability objectives.File | Dimensione | Formato | |
---|---|---|---|
Cascone_2024_Sustainability_Eco-innovative_editor.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.