The existence of a non-trivial bounded solution to the Dirichlet problem is established for a class of nonlinear elliptic equations involving a fully anisotropic partial differential operator. The relevant operator depends on the gradient of the unknown through the differential of a general convex function. This function need not be radial, nor have a polynomial-type growth. Besides providing genuinely new conclusions, our result recovers and embraces, in a unified framework, several contributions in the existing literature, and augments them in various special instances.
Dirichlet problems for fully anisotropic elliptic equations / Barletta, Giuseppina; Cianchi, A. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 147:1(2017), pp. 25-60. [10.1017/S0308210516000020]
Dirichlet problems for fully anisotropic elliptic equations
BARLETTA, Giuseppina;
2017-01-01
Abstract
The existence of a non-trivial bounded solution to the Dirichlet problem is established for a class of nonlinear elliptic equations involving a fully anisotropic partial differential operator. The relevant operator depends on the gradient of the unknown through the differential of a general convex function. This function need not be radial, nor have a polynomial-type growth. Besides providing genuinely new conclusions, our result recovers and embraces, in a unified framework, several contributions in the existing literature, and augments them in various special instances.File | Dimensione | Formato | |
---|---|---|---|
a15091cpx.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
251.62 kB
Formato
Adobe PDF
|
251.62 kB | Adobe PDF | Visualizza/Apri |
Barl C (2017 Proceedings).pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico (Accesso privato/ristretto)
Dimensione
276.42 kB
Formato
Adobe PDF
|
276.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.