The existence of a non-trivial bounded solution to the Dirichlet problem is established for a class of nonlinear elliptic equations involving a fully anisotropic partial differential operator. The relevant operator depends on the gradient of the unknown through the differential of a general convex function. This function need not be radial, nor have a polynomial-type growth. Besides providing genuinely new conclusions, our result recovers and embraces, in a unified framework, several contributions in the existing literature, and augments them in various special instances.

Dirichlet problems for fully anisotropic elliptic equations / Barletta, Giuseppina; Cianchi, A. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 147:1(2017), pp. 25-60. [10.1017/S0308210516000020]

Dirichlet problems for fully anisotropic elliptic equations

BARLETTA, Giuseppina;
2017-01-01

Abstract

The existence of a non-trivial bounded solution to the Dirichlet problem is established for a class of nonlinear elliptic equations involving a fully anisotropic partial differential operator. The relevant operator depends on the gradient of the unknown through the differential of a general convex function. This function need not be radial, nor have a polynomial-type growth. Besides providing genuinely new conclusions, our result recovers and embraces, in a unified framework, several contributions in the existing literature, and augments them in various special instances.
2017
anisotropic elliptic equations; anisotropic Orlicz-Sobolev spaces ; critical-point methods; minimax methods
File in questo prodotto:
File Dimensione Formato  
a15091cpx.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 251.62 kB
Formato Adobe PDF
251.62 kB Adobe PDF Visualizza/Apri
Barl C (2017 Proceedings).pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico (Accesso privato/ristretto)
Dimensione 276.42 kB
Formato Adobe PDF
276.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/3442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 32
social impact