We consider parametric Dirichlet problems driven by the sum of a Laplacian and a nonhomogeneous differential operator ((a,2)-type equation) and with a reaction term which exhibits arbitrary polynomial growth and a nonlinear dependence on the parameter. We prove the existence of three distinct nontrivial smooth solutions for small values of the parameter, providing sign information for them: one is positive, one is negative and the third one is nodal
Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero / Candito, Pasquale; Gasiński, Leszek; Livrea, Roberto. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 480:1(2019). [10.1016/j.jmaa.2019.123398]
Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero
Candito, Pasquale
;
2019-01-01
Abstract
We consider parametric Dirichlet problems driven by the sum of a Laplacian and a nonhomogeneous differential operator ((a,2)-type equation) and with a reaction term which exhibits arbitrary polynomial growth and a nonlinear dependence on the parameter. We prove the existence of three distinct nontrivial smooth solutions for small values of the parameter, providing sign information for them: one is positive, one is negative and the third one is nodalFile | Dimensione | Formato | |
---|---|---|---|
candito_2019_jmaa_three_editor.pdf
non disponibili
Descrizione: versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
487.4 kB
Formato
Adobe PDF
|
487.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
candito_2019_JMAA-three_post.pdf
Open Access dal 03/12/2021
Descrizione: versione post
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
314.86 kB
Formato
Adobe PDF
|
314.86 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.