We consider parametric Dirichlet problems driven by the sum of a Laplacian and a nonhomogeneous differential operator ((a,2)-type equation) and with a reaction term which exhibits arbitrary polynomial growth and a nonlinear dependence on the parameter. We prove the existence of three distinct nontrivial smooth solutions for small values of the parameter, providing sign information for them: one is positive, one is negative and the third one is nodal

Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero / Candito, Pasquale; Gasiński, Leszek; Livrea, Roberto. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 480:1(2019). [10.1016/j.jmaa.2019.123398]

Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero

Candito, Pasquale
;
2019-01-01

Abstract

We consider parametric Dirichlet problems driven by the sum of a Laplacian and a nonhomogeneous differential operator ((a,2)-type equation) and with a reaction term which exhibits arbitrary polynomial growth and a nonlinear dependence on the parameter. We prove the existence of three distinct nontrivial smooth solutions for small values of the parameter, providing sign information for them: one is positive, one is negative and the third one is nodal
2019
(a, 2)-operator, Constant sign solutions, Nodal solutions, Multiplicity of solutions, Nonhomogeneous operator
File in questo prodotto:
File Dimensione Formato  
candito_2019_jmaa_three_editor.pdf

non disponibili

Descrizione: versione editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 487.4 kB
Formato Adobe PDF
487.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
candito_2019_JMAA-three_post.pdf

Open Access dal 03/12/2021

Descrizione: versione post
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 314.86 kB
Formato Adobe PDF
314.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/54674
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact