We study the existence and multiplicity of solutions for a parametric equation driven by the p-laplacian operator on unbounded intervals. Precisely, by using a recent local minimum theorem we prove the existence of a nontrivial nonnegative solution to an equation in the real line, without assuming any asymptotic condition neither at zero nor infinity on the nonlinear term. As a special case, we note the existence of a nontrivial solution for the problem when the nonlinear term is sublinear at zero. Moreover, under a suitable superlinear growth at infinity on the nonlinearity we prove a multiplicity result for such a problem.

A variational approach to multiplicity results for boundary value problems on the real line / Barletta, Giuseppina; Bonanno, G; O'Regan, D. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 145:1(2015), pp. 13-29. [10.1017/S0308210513001200]

A variational approach to multiplicity results for boundary value problems on the real line

BARLETTA, Giuseppina;
2015-01-01

Abstract

We study the existence and multiplicity of solutions for a parametric equation driven by the p-laplacian operator on unbounded intervals. Precisely, by using a recent local minimum theorem we prove the existence of a nontrivial nonnegative solution to an equation in the real line, without assuming any asymptotic condition neither at zero nor infinity on the nonlinear term. As a special case, we note the existence of a nontrivial solution for the problem when the nonlinear term is sublinear at zero. Moreover, under a suitable superlinear growth at infinity on the nonlinearity we prove a multiplicity result for such a problem.
2015
Unbounded domains; boundary value problem; critical points
File in questo prodotto:
File Dimensione Formato  
Bonanno_2015_Variational_Proof.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 191.2 kB
Formato Adobe PDF
191.2 kB Adobe PDF Visualizza/Apri
Barletta (2015 Proceedings).pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico (Accesso privato/ristretto)
Dimensione 153.2 kB
Formato Adobe PDF
153.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/6220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact