We consider a seminonlinear Neumann problem driven by the p-Laplacian plus an indefinite and unbounded potential. The reaction of the problem is resonant at $pm infty$ with respect to the higher parts of the spectrum. Using critical point theory, truncation and perturbation techniques, Morse theory and the reduction method, we prove two multiplicity theorems. One produces three nontrivial smooth solutions and the second four nontrivial smooth solutions.
Resonant Neumann equations with indefinite linear part / Barletta, Giuseppina; Livrea, R; Papageorgiou, N S. - In: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS. - ISSN 1230-3429. - 45:2(2015), pp. 469-491. [10.12775/TMNA.2015.023]
Resonant Neumann equations with indefinite linear part.
BARLETTA, Giuseppina
;
2015-01-01
Abstract
We consider a seminonlinear Neumann problem driven by the p-Laplacian plus an indefinite and unbounded potential. The reaction of the problem is resonant at $pm infty$ with respect to the higher parts of the spectrum. Using critical point theory, truncation and perturbation techniques, Morse theory and the reduction method, we prove two multiplicity theorems. One produces three nontrivial smooth solutions and the second four nontrivial smooth solutions.File | Dimensione | Formato | |
---|---|---|---|
BLP Resonant Neumann equations with indefinite linear part.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
336.55 kB
Formato
Adobe PDF
|
336.55 kB | Adobe PDF | Visualizza/Apri |
Barletta (2015 TMNA).pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico (Accesso privato/ristretto)
Dimensione
390.42 kB
Formato
Adobe PDF
|
390.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.