In this article, we consider an evolution partial differential equation with Caputo time-derivative with the zero Dirichlet boundary condition: $pppa u + Au = F$ where $0< alpha < 1$ and the principal part $-A$, is a non-symmetric elliptic operator of the second order. Given a source F, we prove the well-posedness for the backward problem in time and our result generalizes the existing results assuming that $-A$ is symmetric. The key is a perturbation argument and the completeness of the generalized eigenfunctions of the elliptic operator $A$.

Well-posedness for the backward problems in time for general time-fractional diffusion equation / Floridia, Giuseppe; Li, Zhiyuan; Yamamoto, Masahiro. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 31:3(2020), pp. 593-610. [10.4171/RLM/906]

Well-posedness for the backward problems in time for general time-fractional diffusion equation

Floridia, Giuseppe
;
2020-01-01

Abstract

In this article, we consider an evolution partial differential equation with Caputo time-derivative with the zero Dirichlet boundary condition: $pppa u + Au = F$ where $0< alpha < 1$ and the principal part $-A$, is a non-symmetric elliptic operator of the second order. Given a source F, we prove the well-posedness for the backward problem in time and our result generalizes the existing results assuming that $-A$ is symmetric. The key is a perturbation argument and the completeness of the generalized eigenfunctions of the elliptic operator $A$.
2020
Fractional PDE, backward problem, well-posedness
File in questo prodotto:
File Dimensione Formato  
Floridia_2020_RLM_Equation_post.pdf

accesso aperto

Descrizione: Bozza finale post-referaggio
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 145.52 kB
Formato Adobe PDF
145.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/67377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact