The effect of an edible pectin-based coating supplemented with a lemon byproduct extract on the quality attributes of fresh-cut carrots was studied. Color, hardness, microbial growth, respiratory activity, and antioxidant properties of fresh-cut carrots were studied during 14 days of storage at 4◦ C. The application of a pectin-based coating containing a lemon byproduct extract preserved carrots’ physiological parameters, reduced their physiological activity and, thus, delayed senescence. This aspect was also confirmed by the reduced O2 consumption of the coated carrots due to the slowing down of the product’s metabolic reactions. Moreover, coated carrots were characterized by limited changes in colour (∆E < 3) and white-blush development on both cortical tissue and vascular cylinder, and the presence of calcium chloride in the coating formulation helped to maintain carrots’ hardness throughout storage. In addition, treatment with pectin-based coating and lemon byproduct extract improved microbiological stability of fresh-cut carrots, showing the lowest value of total bacterial count immediately after treatment (2.58 log CFU g−1). This kind of treatment also resulted in a significant preservation of valuable compounds (17.22 mg GAE 100 g−1) and antioxidant activity level (289.49 µM Trolox 100 g−1), reducing the wounding stress induced by processing operations for at least ten days.

Efficacy of Pectin-Based Coating Added with a Lemon Byproduct Extract on Quality Preservation of Fresh-Cut Carrots

Imeneo V.;Piscopo A.;
2022

Abstract

The effect of an edible pectin-based coating supplemented with a lemon byproduct extract on the quality attributes of fresh-cut carrots was studied. Color, hardness, microbial growth, respiratory activity, and antioxidant properties of fresh-cut carrots were studied during 14 days of storage at 4◦ C. The application of a pectin-based coating containing a lemon byproduct extract preserved carrots’ physiological parameters, reduced their physiological activity and, thus, delayed senescence. This aspect was also confirmed by the reduced O2 consumption of the coated carrots due to the slowing down of the product’s metabolic reactions. Moreover, coated carrots were characterized by limited changes in colour (∆E < 3) and white-blush development on both cortical tissue and vascular cylinder, and the presence of calcium chloride in the coating formulation helped to maintain carrots’ hardness throughout storage. In addition, treatment with pectin-based coating and lemon byproduct extract improved microbiological stability of fresh-cut carrots, showing the lowest value of total bacterial count immediately after treatment (2.58 log CFU g−1). This kind of treatment also resulted in a significant preservation of valuable compounds (17.22 mg GAE 100 g−1) and antioxidant activity level (289.49 µM Trolox 100 g−1), reducing the wounding stress induced by processing operations for at least ten days.
antioxidant
carotenoids and phenolic compounds
fresh-cut carrot
lemon byproduct
pectin-based coating
quality attributes
respiratory activity
File in questo prodotto:
File Dimensione Formato  
Imeneo_2022_Foods_Efficacy_editor.pdf

accesso aperto

Descrizione: versione dell'editore - OPEN ACCESS
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12318/125928
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact